Automatic recognition and intelligent analysis of central shrinkage defects of continuous casting billets based on deep learning  被引量:3

在线阅读下载全文

作  者:Gong-hao Lian Qi-hao Sun Xiao-ming Liu Wei-miao Kong Ming Lv Jian-jun Qi Yong Liu Ben-ming Yuan Qiang Wang 

机构地区:[1]Key Laboratory of Electromagnetic Processing of Materials(Ministry of Education),Northeastern University,Shenyang 110819,Liaoning,China [2]State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang 110819,Liaoning,China [3]Shandong Iron and Steel Group Co.,Ltd.,Jinan 271105,Shandong,China [4]HBIS Material Technology Research Institude,Shijiazhuang 050023,Hebei,China [5]Special Steel Business Department of Shandong Steel Laiwu Branch,Jinan 271105,Shandong,China

出  处:《Journal of Iron and Steel Research International》2023年第5期937-948,共12页

基  金:the National Natural Science Foundation of China(Nos.U21A20117,U1560207 and 52003039);the National Key R&D Program of China(No.2017YFB0304402);the Fundamental Research Funds for the Central Universities(Nos.N2125018 and N2109001);the Liaoning Natural Science Foundation(No.2022-MS-365);the Liaoning Innovative Research Team in University(No.LT2017011).

摘  要:The internal quality inspection of the continuous casting billets is very important,and mis-inspection will seriously affect the subsequent production process.The UNet-VGG16 transfer learning model was used for semantic segmentation of the central shrinkage defects of the continuous casting billets.The automatic recognition accuracy of the central shrinkage defects of the continuous casting billets reaches more than 0.9.We use the minimum circumscribed rectangle to quantify the geometric dimensions such as length,width and area of the central shrinkage defects and use the threshold method to rate the central shrinkage defects of the continuous casting billets.The results show that all the testing images are rated correctly,and this method achieves the automatic recognition and intelligent analysis of the central shrinkage defects of the continuous casting billets.

关 键 词:Central shrinkage Deep learning Image segmentation Circumscribed rectangle Automatic recognition 

分 类 号:TF777[冶金工程—钢铁冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象