基于集成经验模态分解与集成机器学习的锂离子电池剩余使用寿命预测方法  被引量:10

Remaining useful life prediction method for lithium-ion batteries based on ensemble empirical mode decomposition and ensemble machine learning

在线阅读下载全文

作  者:张朝龙 赵筛筛[3] 何怡刚 ZHANG Chaolong;ZHAO Shaishai;HE Yigang(College of Intelligent Science and Control Engineering,Jinling Institute of Technology,Nanjing 211169,China;School of Electrical Engineering and Automation,Wuhan University,Wuhan 430072,China;School of Electronic Engineering and Intelligent Manufacturing,Anqing Normal University,Anqing 246011,China)

机构地区:[1]金陵科技学院智能科学与控制工程学院,江苏南京211169 [2]武汉大学电气与自动化学院,湖北武汉430072 [3]安庆师范大学电子工程与智能制造学院,安徽安庆246011

出  处:《电力系统保护与控制》2023年第13期177-186,共10页Power System Protection and Control

基  金:国家重点研发计划项目资助(2020YFB0905905);金陵科技学院高层次人才科研启动基金项目资助(jitrcyj-202202)。

摘  要:准确预测储能锂离子电池剩余使用寿命(remaining useful life,RUL)对于电力系统的安全性与可靠性至关重要。针对锂离子电池老化轨迹呈现非线性变化的问题,提出一种基于集成经验模态分解(ensemble empirical mode decomposition,EEMD)和集成机器学习的锂离子电池剩余使用寿命预测方法。首先,利用集成经验模态分解算法分解锂离子电池老化数据。其次,分别利用集成的长短时记忆神经网络与相关向量机对分解得到的残差数据序列和本征模态数据序列建模预测。最后,融合预测的残差数据序列和本征模态数据序列,综合计算锂离子电池未来寿命老化轨迹。采用储能锂离子电池老化数据进行验证,结果显示所提出的锂离子电池RUL预测方法具有更好的鲁棒性与非线性跟踪能力。A precise prediction of the remaining useful life for energy storage lithium-ion batteries is critical to the safety and reliability of power systems.To solve the problem of serious nonlinear changes of the aging trajectory of lithium-ion batteries,this paper proposes an ensemble empirical mode decomposition(EEMD)and an ensemble machine learning-based RUL prediction method.First,the measured raw lithium-ion battery aging data are decomposed using the EEMD algorithm.Then,a long short-term memory(LSTM)neural network and the relevance vector machine(RVM)algorithm are integrated and applied to model and predict the residual sequence and the intrinsic mode sequences obtained by decomposition.Finally,the future lifespan aging trajectory of the lithium-ion battery is acquired by fusing the predicted residual sequence and the intrinsic mode sequences.The aging data of energy storage lithium-ion batteries are employed to validate the proposed method.The results show that the proposed RUL prediction method for lithium-ion batteries has better robustness and nonlinear tracking ability.

关 键 词:锂离子电池 剩余使用寿命预测 集成经验模态分解 相关向量机算法 长短时记忆神经网络 

分 类 号:TM912[电气工程—电力电子与电力传动] TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象