基于LoRa的机械冲压机故障检测系统设计  被引量:1

Design of Mechanical Stamping Machine Fault Detection System Based on LoRa

在线阅读下载全文

作  者:许龙铭 Xu Longming(School of Communication Engineering,Guangzhou City University of Technology,Guangzhou 510800,China)

机构地区:[1]广州城市理工学院通信工程学院,广州510800

出  处:《单片机与嵌入式系统应用》2023年第7期88-91,共4页Microcontrollers & Embedded Systems

基  金:广东省普通高校重点领域专项(2022ZDZX1041);广东大学生科技创新培育专项资金资助项目(pdjh2022b0759)。

摘  要:针对机械冲压机故障定位困难问题,设计了一种低功耗机械冲压机故障检测系统。采用超低功耗STM32L051C8T6微控制器作为主控单元,基于LoRa技术完成传感器的多节点组网,采集冲压机冲头的温度和振动信号,并传输到基于安卓嵌入式平台的网关系统上进行分析、存储。采用降低时钟、低功耗外设、低功耗内部资源等多种方法降低系统功耗。实验结果表明,系统在金属设备密集分布的车间环境中,数据稳定传输距离达到300 m,丢包率低于1.2%,温度检测精度高于±0.5℃,振动精度高于±0.1g,平均工作电流为1.17 mA,该系统实时性强、抗干扰能力强、成本低、功耗低,能够满足冲击机实时状态监测的需求。Aiming at the difficulty of fault location of mechanical stamping machine,a low power consumption fault detection system for mechanical stamping machine is designed.The ultra-low power STM32L051C8T6 microcontroller is used as the main control,and the multi-node networking of the sensor is completed based on LoRa technology.The temperature and vibration signals of the punch of the punching machine are collected and transmitted to the gateway system based on Android embedded platform for analysis and storage.The system functions are reduced by reducing the clock,low-power peripherals,and low-power internal resources.The experiment results show that the stable transmission distance of the system can reach 300 meters,the packet loss rate is lower than 1.2%,the temperature detection accuracy is higher than±0.5℃,the vibration accuracy is higher than±0.1g,and the average working current is 1.17 mA in the workshop environment where the metal equipment is densely distributed.The system has strong real-time performance,strong anti-interference ability,low cost,low power consumption,and can effectively satisfy the impact machine real-time condition monitoring requirements.

关 键 词:冲压机故障定位 LoRa STM32L051C8T6 安卓 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象