MILI:Multi-person inference from a low-resolution image  

在线阅读下载全文

作  者:Kun Li Yunke Liu Yu-Kun Lai Jingyu Yang 

机构地区:[1]Tianjin University,Tianjin 300350,China [2]CardiffUniversity,CardiffCF244AG,United Kingdom

出  处:《Fundamental Research》2023年第3期434-441,共8页自然科学基础研究(英文版)

基  金:partly supported by the National Natural Science Foundation of China(62122058,62171317,and 62231018).

摘  要:Existing multi-person reconstruction methods require the human bodies in the input image to occupy a considerable portion of the picture.However,low-resolution human objects are ubiquitous due to trade-offbetween the field of view and target distance given a limited camera resolution.In this paper,we propose an end-to-end multi-task framework for multi-person inference from a low-resolution image(MILI).To perceive more information from a low-resolution image,we use pair-wise images at high resolution and low resolution for training,and design a restoration network with a simple loss for better feature extraction from the low-resolution image.To address the occlusion problem in multi-person scenes,we propose an occlusion-aware mask prediction network to estimate the mask of each person during 3D mesh regression.Experimental results on both small-scale scenes and large-scale scenes demonstrate that our method outperforms the state-of-the-art methods both quantitatively and qualitatively.The code is available at http://cic.tju.edu.cn/faculty/likun/projects/MILI.

关 键 词:Multi-person reconstruction Low-resolution human objects End-to-end Multi-task learning Occlusion-aware prediction 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象