检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Orthopedics,Changhai Hospital,Shanghai 200433,China
出 处:《World Journal of Clinical Cases》2023年第20期4824-4832,共9页世界临床病例杂志
摘 要:BACKGROUND Spinal osteoporosis is a prevalent health condition characterized by the thinning of bone tissues in the spine,increasing the risk of fractures.Given its high incidence,especially among older populations,it is critical to have accurate and effective predictive models for fracture risk.Traditionally,clinicians have relied on a combination of factors such as demographics,clinical attributes,and radiological characteristics to predict fracture risk in these patients.However,these models often lack precision and fail to include all potential risk factors.There is a need for a more comprehensive,statistically robust prediction model that can better identify high-risk individuals for early intervention.AIM To construct and validate a model for forecasting fracture risk in patients with spinal osteoporosis.METHODS The medical records of 80 patients with spinal osteoporosis who were diagnosed and treated between 2019 and 2022 were retrospectively examined.The patients were selected according to strict criteria and categorized into two groups:Those with fractures(n=40)and those without fractures(n=40).Demographics,clinical attributes,biochemical indicators,bone mineral density(BMD),and radiological characteristics were collected and compared.A logistic regression analysis was employed to create an osteoporotic fracture risk-prediction model.The area under the receiver operating characteristic curve(AUROC)was used to evaluate the model’s performance.RESULTS Factors significantly associated with fracture risk included age,sex,body mass index(BMI),smoking history,BMD,vertebral trabecular alterations,and prior vertebral fractures.The final risk-prediction model was developed using the formula:(logit[P]=-3.75+0.04×age-1.15×sex+0.02×BMI+0.83×smoking history+2.25×BMD-1.12×vertebral trabecular alterations+1.83×previous vertebral fractures).The AUROC of the model was 0.93(95%CI:0.88-0.96,P<0.001),indicating strong discriminatory capabilities.CONCLUSION The fracture risk-prediction model,utilizing accessible cli
关 键 词:Spinal osteoporosis Fracture risk prediction Bone mineral density Vertebral trabecular alterations Previous vertebral fractures
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.229.54