检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:JDMD Editorial Office Nagi Gebraeel Yaguo Lei Naipeng Li Xiaosheng Si Enrico Zio
机构地区:[1]Editorial Office of JDMD,Chongqing University of Technology,Chongqing,People’s Republic of China [2]H.Milton Stewart School of Industrial and Systems Engineering,Georgia Institute of Technology,Atlanta,GA,USA [3]Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System,Xi’an Jiaotong University,Xi’an,People’s Republic of China [4]Zhijian Laboratory,Rocket Force University of Engineering,Xi’an,People’s Republic of China [5]MINES Paris,PSL Research University,Sophia Antipolis,France [6]Energy Department,Politecnico di Milano,Milan,Italy
出 处:《Journal of Dynamics, Monitoring and Diagnostics》2023年第1期1-12,共12页动力学、监测与诊断学报(英文)
基 金:The work in Section III was supported by the National Science Foundation of China(NSFC)(Nos.52025056,52005387);the work in Section IV was supported by the National Science Foundation of China(NSFC)(Nos.62233017,62073336).
摘 要:As the fundamental and key technique to ensure the safe and reliable operation of vital systems,prognostics with an emphasis on the remaining useful life(RUL)prediction has attracted great attention in the last decades.In this paper,we briefly discuss the general idea and advances of various prognostics and RUL prediction methods for machinery,mainly including data-driven methods,physics-based methods,hybrid methods,etc.Based on the observations fromthe state of the art,we provide comprehensive discussions on the possible opportunities and challenges of prognostics and RUL prediction of machinery so as to steer the future development.
关 键 词:PROGNOSTICS remaining useful life DATA-DRIVEN machine learning degradation modeling
分 类 号:TH12[机械工程—机械设计及理论] TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117