Wavelet Estimation for Regression Convolution Model with Heteroscedastic Errors  

在线阅读下载全文

作  者:Christophe Chesneau Junke Kou 

机构地区:[1]Laboratoire de Mathématiques Nicolas Oresme,Universitéde Caen Normandie,Caen 14032,France [2]School of Mathematics and Computational Science,Guilin University of Electronic Technology,Guilin 541004,China

出  处:《Journal of Mathematical Study》2023年第2期111-134,共24页数学研究(英文)

基  金:supported by the National Natural Science Foundation of China(Grant No.12001133);Guangxi Natural Science Foundation(Grant No.2023GXNSFAA026042);Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation.

摘  要:This paper considers an unknown functional estimation problem in a multidimensional periodic regression convolution model with heteroscedastic errors.This model has potential applications in signal recovery when both noise and blur are present in the observed data.Our approach is mainly theoretical,however.We first propose a linear wavelet estimator and then discuss the upper bound for its mean integrated squared error over Besov balls.Moreover,the rate of convergence of this estimator under pointwise error is considered.A nonlinear wavelet estimator is constructed by using the hard thresholding method for adaptivity purposes.It should be pointed out that the obtained rate of convergence of the nonlinear estimator is kept the same as the linear one up to a logarithmic term.

关 键 词:Nonparametric estimation regression convolution model Heteroscedastic errors WAVELETS 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象