L^(p)Harmonic k-forms on Complete Noncompact Hypersurfaces in S^(n+1) with Finite Total Curvature  

在线阅读下载全文

作  者:Jiuru Zhou 

机构地区:[1]School of Mathematical Sciences,Yangzhou University,Yangzhou 225002,China

出  处:《Journal of Mathematical Study》2021年第4期396-406,共11页数学研究(英文)

基  金:supported by National Natural Science Foundation of China(Grant No.11771377);the Natural Science Foundation of Jiangsu Province(Grant No.BK20191435).

摘  要:In general,the space of Lp harmonic forms H^(k)(Lp(M))and reduced Lp cohomology Hk(L^(p)(M))might be not isomorphic on a complete Riemannian manifold M,except for p=2.Nevertheless,one can consider whether dimH^(k)(Lp(M))<+∞are equivalent to dimHk(Lp(M))<+¥.In order to study such kind of problems,this paper obtains that dimension of space of Lp harmonic forms on a hypersurface in unit spherewith finite total curvature is finite,which is also a generalization of the previous work by Zhu.The next step will be the investigation of dimension of the reduced Lp cohomology on such hypersurfaces.

关 键 词:L^(p)harmonic k-form hypersurface in sphere total curvature 

分 类 号:O18[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象