基于模型不可知元学习与对抗训练的中文情感分析研究  被引量:1

Research on Chinese affective analysis based on model-agnostic meta-learning and antagonistic training

在线阅读下载全文

作  者:张韬政[1] 蒙佳健 李康 ZHANG Taozheng;MENG Jiajian;LI Kang(School of Information and Communication Engineering,Communication University of China,Beijing 100024,China)

机构地区:[1]中国传媒大学信息与通信工程学院,北京100024

出  处:《中国传媒大学学报(自然科学版)》2023年第3期31-40,共10页Journal of Communication University of China:Science and Technology

基  金:中国传媒大学中央高校基本科研业务费专项资金资助(3132018XNG1829)。

摘  要:中文情感分析旨在挖掘出中文文本中的主观情感。目前大多数基于深度学习的中文情感分析模型需要依赖大规模的标注数据去训练,同时深度学习模型在实际应用当中很容易受到对抗性扰动的影响,导致模型的性能下降。针对上述问题,本文提出了基于模型不可知元学习与对抗训练的中文情感分析模型,能够在小规模的数据集下利用元学习加速模型收敛,同时生成对抗样本对模型进行对抗训练,提升模型的抗干扰能力,实验证明模型取得了出色的表现。Chinese affective analysis aims to dig out the subjective emotion in Chinese text.At present,most Chinese affective analysis models based on deep learning need to rely on large-scale labeled data for training.Meanwhile,deep learning models are easy to be affected by adversarial disturbance in practical applications,resulting in the degradation of model performance.In response to the above issues,this paper proposes a Chinese affective analysis model based on model-agnostic meta-learning and antagonistic training,which can accelerate the convergence of the model using meta learning under small-scale datasets,and generate confrontation samples to conduct confrontat-ion training on the model,improving the anti-interference ability of the model.Experiments have shown that the model has achieved excellent performance.

关 键 词:BERT BiLSTM 模型不可知元学习 对抗训练 情感分析 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象