基于u-wordMixup的半监督深度学习模型  被引量:1

Semi-supervised deep learning model based on u-wordMixup

在线阅读下载全文

作  者:唐焕玲[1,3,4] 宋双梅 刘孝炎 窦全胜 鲁明羽[5] TANG Huan-ling;SONG Shuang-mei;LIU Xiao-yan;DOU Quan-sheng;LU Ming-yu(School of Computer Science and Technology,Shandong Technology and Business University,Yantai 264005,China;School of Information and Electronic Engineering,Shandong Technology and Business University,Yantai 264005,China;Co-innovation Center of Shandong Colleges and Universities:Future Intelligent Computing,Yantai 264005,China;Key Laboratory of Intelligent Information Processing in Universities of Shandong,Shandong Technology and Business University,Yantai 264005,China;Information Science and Technology College,Dalian Maritime University,Dalian 116026,China)

机构地区:[1]山东工商学院计算机科学与技术学院,山东烟台264005 [2]山东工商学院信息与电子工程学院,山东烟台264005 [3]山东省高等学校协同创新中心:未来智能计算,山东烟台264005 [4]山东工商学院山东省高校智能信息处理重点实验室,山东烟台264005 [5]大连海事大学信息科学技术学院,辽宁大连116026

出  处:《控制与决策》2023年第6期1646-1652,共7页Control and Decision

基  金:国家自然科学基金项目(61976124,61976125,62176140,61873177,61972235,82001775).

摘  要:当标注样本匮乏时,半监督学习利用大量未标注样本解决标注瓶颈的问题,但由于未标注样本和标注样本来自不同领域,可能造成未标注样本存在质量问题,使得模型的泛化能力变差,导致分类精度下降.为此,基于wordMixup方法,提出针对未标注样本进行数据增强的u-wordMixup方法,结合一致性训练框架和Mean Teacher模型,提出一种基于u-wordMixup的半监督深度学习模型(semi-supervised deep learning model based on u-wordMixup,SD-uwM).该模型利用u-wordMixup方法对未标注样本进行数据增强,在有监督交叉熵和无监督一致性损失的约束下,能够提高未标注样本质量,减少过度拟合.在AGNews、THUCNews和20 Newsgroups数据集上的对比实验结果表明,所提出方法能够提高模型的泛化能力,同时有效提高时间性能.When labeled data are deficient,semi-supervised learning uses a large number of unlabeled data to solve the bottleneck problem of labeled data.However,as the unlabeled data and labeled data come from different fields,quality problems of unlabeled data would be callsed,which makes the generalization ability of the model poor and leads to the degradation of classification accuracy.Therefore,based on the wordMixup method,this paper proposes the u-wordMixup method for data augmentation of unlabeled data,and a semi-supervised deep learning model based on the u-wordMixup(SD-uwM)by combining the consistent training framework and the Mean Teacher model.The model utilizes the u-wordMixup method to augment the data of unlabeled data,which can improve the quality of unlabeled data and reduce overfitting under the constraints of supervised cross-entropy and unsupervised consistency loss.The comparative experimental results on the datasets of AGNews,THUCNews and 20 Newsgroups show that the proposed method can improve the generalization ability of the model and also effectively improve the time performance.

关 键 词:半监督学习 数据增强 深度学习 文本分类 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象