Hot-melt extrusion promotes dissolution,extends“spring-parachute”process and inhibits crystallization in supersaturating microparticle systems  

在线阅读下载全文

作  者:Yanfei Zhang Huifeng Zhang Huan Yu Yinghui Ma Chengyi Hao Xiaoying Lin Yong Zhang Zhengqiang Li Xianrong Qi Jia Zeng Nianqiu Shi 

机构地区:[1]School of Pharmacy,jilin Medical University Jilin,132013,jilin Province,China [2]Collge of Life Science,Jilin University,Changchun,130012,jilin Province,China [3]Department of Pharmaceutics,School of Pharmaceutical Science,Peking University,Beijing,100191,China [4]College of Pharmaceutical Sciences,Yanbian University,Yanji,133002,jilin Province,China

出  处:《Particuology》2023年第7期35-48,共14页颗粒学报(英文版)

基  金:supported by National Natural Science Foundation of China(No.82172593 and 82204729);Science and Technology Development Program of Jjilin Province of China(No.20210101430JC,YDZJ202201ZYTS234 and YDZJ202201ZYTS223);China Postdoctoral Science Foundation(No.2015M571373);Science and Technology Development Program of jilin City in Jjilin Province of China(No.20200104067,201831739 and 201464053);Scientific Research Foundation of the Education Department of Jilin Province of China(No.JJKH20191072KJ and 2015-401);Doctoral Research Startup Fund Project of Jilin Medical University(No.JYBS2021002LK);the College Students'Innovation Project of Jilin Province(No.202013706026).

摘  要:Despite the potential advantages of amorphism-induced supersaturation,the merit of new amorphiza-tion formation methods on the properties of the amorphous drug including the stability of the amor-phous state,dissolution/solubility,supersaturation,and"spring-parachute"process is still poorly understood,particularly for certain amorphous supersaturating drug delivery systems(aSDDS).The present work aimed to explore the detailed merit of current attractive amorphization manufacturing methods(i.g.,hot-melt extrusion(HME)technique)on the property improvement of aSDDS in form of amorphous solid dispersion microparticles by employing a model Bcs II drug nitrendipine and a polyvinylpyrrolidone-based model polymer copovidone.Many asDDS systems were developed by various methods,and their physicochemical properties were characterized by SEM,PXRD and DSC.HME-triggered amorphization induced superior supersaturation by the observation of the highest dissolution and solubility.HME induced the optimal supersaturation duration by the observed greatest extension of"spring-parachute"process(e.g,maximum AUCspring-parachute).HME technique is comparable with other techniques for the stabilization of amorphous state during storage.All aSDDS systems by HME and other methods showed improved long-term stability of the amorphous state in comparison to the pure amorphous drug.Fourier transformation infrared spectroscopy,Noyes-Whitney equation,nucleation theory and Gibbs free energy of transfer(△G)were used to analyze the underlying mechanisms.Mo-lecular mechanism studies indicated that HME caused a stronger crystallization inhibition effect in the asDDS systems than other methods,but molecular interaction is not a dominant mechanism for property enhancement caused by HME.For the mechanism associated with the polymer itself(PVPVA64),it could inhibit the drug recrystallization,solubilize the drug spontaneously and cause the improved molecular interactions in all aSDDS systems.This study provided a deep insight into detailed advantage of HME

关 键 词:Hot-melt extrusion-triggered amorphization Extensionof"spring-parachute"process Promotion of dissolution/solubility Inhibition of crystallization from a supersaturated state Amorphism-based supersaturating drug microparticle systems 

分 类 号:TG1[金属学及工艺—金属学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象