检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李耀华[1] 王孝宇 刘子焜 陈桂鑫 刘东梅 任超 LI Yaohua;WANG Xiaoyu;LIU Zikun;CHEN Guixin;LIU Dongmei;REN Chao(School of Automotive,Chang’an University,Xi’an 710064,China)
出 处:《电机与控制学报》2023年第6期85-95,共11页Electric Machines and Control
基 金:国家自然科学基金(51207012);陕西省工业科技攻关项目(2016GY-069);陕西省自然科学基金(2020JQ-385);中央高校基本科研业务费专项资金资助项目(300102228201)。
摘 要:针对表贴式永磁同步电机多步模型预测电流控制过程中运算量大的问题,提出两种多步预测控制简化策略。建立表贴式永磁同步电机传统多步模型预测电流控制(C-MPCC)模型,基于电压矢量选择规律,提出一种简化策略(S-MPCC)。以n步预测(n≥2)为例,C-MPCC需进行(7^((n+1))-7)/6次电流预测计算和(7^(n)-1)次数据比较运算,而S-MPCC仅需(2 n-1)×7次电流预测计算和(25 n-26)次数据比较运算,减小运算量。基于S-MPCC,进一步提出增加判断环节的简化策略(S-MPCC-II)。仿真结果表明,简化策略S-MPCC和S-MPCC-II控制下,电机系统运行良好,运行效果与C-MPCC基本相当。采用STM32H743单片机平台进行3种策略的单控制周期执行时间实验验证。实验结果表明,S-MPCC的预测次数和成本函数寻优过程中的数据比较次数仅为C-MPCC的0.32%和0.59%,单控制周期执行时间减小至0.30%。S-MPCC-II控制策略可在保持与S-MPCC相同控制效果的条件下,进一步减小运算量,提高系统实时性能。In order to solve the problem of computational burden in the process of multi-step model predictive current control of surface-mounted permanent magnet synchronous motor,two simplified multi-step predictive control strategies are proposed.The conventional multi-step model predictive current control(C-MPCC)model of surface-mounted permanent magnet synchronous motor is established.Based on the law of voltage vector selection,a simplified strategy(S-MPCC)is proposed.Taking n-step prediction(n≥2)as an example,C-MPCC needs(7^((n+1))-7)/6 current prediction calculations and(7^(n)-1)data comparison operations,while S-MPCC only needs(2 n-1)×7 current prediction calculations and(25 n-26)data comparison operations.Based on S-MPCC,another strategy to use an adding judgment to reduce calculation burden(S-MPCC-II)is proposed.Simulation results show that the motor system works properly under the control of the S-MPCC and S-MPCC-II.The control performances are almost the same as the C-MPCC.The execution time of three strategies in a single control cycle are compared based on the STM32H743 micro control unit platform.Experimental results show that the prediction time and the data comparison time in cost function optimization of S-MPCC are only 0.32%and 0.59%of C-MPCC,and the whole execution time of single control cycle is reduced to 0.30%.And the S-MPCC-II control strategy can further reduce the computational burden and improve the real-time performance of the system while maintaining the same control performances as the S-MPCC.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.241.228