基于射频指纹的卫星测控地面站身份识别方法  被引量:3

Satellite Telemetry Track and Command Ground Station Identification Method Based on RF Fingerprint

在线阅读下载全文

作  者:唐晓刚 冯俊豪 张斌权 郇浩[2] 任彦洁 李海滨 TANG Xiaogang;FENG Junhao;ZHANG Binquan;HUAN Hao;REN Yanjie;LI Haibin(School of Aerospace Information,Space Engineering University,Beijing 101407,China;School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China)

机构地区:[1]航天工程大学信息学院,北京101407 [2]北京理工大学信息与电子学院,北京100081

出  处:《电子与信息学报》2023年第7期2554-2560,共7页Journal of Electronics & Information Technology

基  金:国家自然科学基金(62027801)。

摘  要:传统卫星测控通常采用加密认证安全机制,存在身份假冒、欺骗等安全问题,该文提出一种基于射频指纹的卫星测控地面站身份识别方法,并设计了一种面向星载平台的轻量化卷积神经网络。该网络首先使用IQ方向上的卷积层提取IQ信号相关特征,将2维数据降成了1维,再使用时序方向上的多层卷积提取信号的时域结构特征,之后使用最大池化层降低数据维度,在充分利用IQ信号中包含的原始特征信息的同时减小计算量,最后经过两层全连接层进行分类,实现对卫星测控地面站身份识别。仿真实验表明,该方法对21台发射机个体的平均准确率为93.8%,较传统的支持向量机方法提高了39.8%,较DLRF网络模型、ORACLE网络模型分别提高了11.5%,29.8%,且具有鲁棒性强、轻量化的优点。该文所提方法对于提高卫星测控链路安全性具有一定的理论参考和工程应用价值。Encryption authentication is generally adopted to ensure the security of traditional satellite Telemetry Track and Command(TT&C).However,several security limitations remain to be improved such as identity counterfeiting and deception.A satellite TT&C ground station identity recognition method via radio frequency fingerprint is presented,and a lightweight convolutional neural network for satellite platforms is designed.Relevant features of the IQ signal are extracted through the convolution layer in the IQ direction,which converts the two-dimensional data to one dimension.The time-domain structural features of the signal are extracted by using the multi-layer convolution in the time-series direction.Then a maximum pooling layer is developed to reduce the data dimension,ensuring that the original feature information contained in the IQ signal is fully utilized and the computation burden is reduced.Finally,the identification of the satellite TT&C ground station is realized by two full connection layers.Simulation experiments show that the average accuracy of the proposed method for 21 transmitters is 93.8%,which is 39.8%higher than the traditional support vector machine method,11.5%higher than the DLRF network model,and 29.8%higher than the Oracle network model.And the results indicate that the proposed method is robust and requires less computation,which shows the theoretical references and engineering application value for improving the security of the satellite TT&C link.

关 键 词:测控安全 射频指纹 身份识别 深度学习 

分 类 号:TN975[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象