基于DTCNN-SVM的工业循环水系统供水泵故障诊断  被引量:5

Fault diagnosis of water supply pump in industrial circulating water system based on DTCNN-SVM

在线阅读下载全文

作  者:吴佳[1] 李明宸 唐文妍 WU Jia;LI Mingchen;TANG Wenyan(College of Automation and Electronic Information,Xiangtan University,Xiangtan 411105,China)

机构地区:[1]湘潭大学自动化与电子信息学院,湖南湘潭411105

出  处:《振动与冲击》2023年第13期226-234,共9页Journal of Vibration and Shock

基  金:湖南省自然科学基金(2021JJ30687);湖南省教育厅优秀青年基金(21B0137)。

摘  要:工业循环水系统供水泵的工作状态是影响工业过程安全生产的重要因素,为及时准确地识别供水泵的工作状态,提出一种基于深度迁移卷积神经网络和支持向量机(deep transfer convolutional neural network-support vector machine,DTCNN-SVM)的故障诊断方法。将与工作状态强相关的振动信号进行信号-图像预处理,实现振动时序信号的二维灰度图化;在此基础上,采用融合迁移学习与残差神经网络的深度迁移卷积神经网络模型提取振动信号灰度图特征,并基于模糊不一致性度量对深度学习特征进行约简;采用支持向量机法建立供水泵故障诊断模型。试验结果表明,所提方法在少量样本数据和模型参数下能有效识别供水泵工作状态。Working state of water supply pump in industrial circulating water system is an important factor affecting safe production of industrial process.Here,to identify working state of water supply pump timely and accurately,a fault diagnosis method based on deep transfer convolution neural network and support vector machine(DTCNN-SVM)was proposed.Firstly,signal-image pre-processing of vibration signals strongly correlated to working state was performed to obtain two-dimensional gray-scale images of vibration time sequence signals.Then,DTCNN model fusing transfer learning and residual neural network was used to extract features of vibration signal gray-scale images,and deep learning features were reduced based on fuzzy inconsistency measure.Finally,SVM was used to establish the fault diagnosis model of water supply pump.The test results showed that the proposed method can effectively identify working state of water supply pump under the condition of a small amount of sample data and model parameters.

关 键 词:供水泵故障诊断 深度迁移卷积神经网络(DTCNN) 支持向量机(SVM) 模糊不一致性度量 

分 类 号:TP29[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象