On Finite Non-Solvable Groups Whose Gruenberg-Kegel Graphs are Isomorphic to the Paw  

在线阅读下载全文

作  者:A.S.Kondrat’ev N.A.Minigulov 

机构地区:[1]N.N.Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences,16 S.Kovalevskaya Str,Yekaterinburg 620108,Russia

出  处:《Communications in Mathematics and Statistics》2022年第4期653-667,共15页数学与统计通讯(英文)

基  金:supported by the Russian Science Foundation(project 19-71-10067).

摘  要:The Gruenberg-Kegel graph(or the prime graph)Γ(G)of a finite group G is a graph,in which the vertex set is the set of all prime divisors of the order of G and two different vertices p and q are adjacent if and only if there exists an element of order pq in G.The paw is a graph on four vertices whose degrees are 1,2,2,3.We consider the problem of describing finite groups whose Gruenberg-Kegel graphs are isomorphic as abstract graphs to the paw.For example,the Gruenberg-Kegel graph of the alternating group A_(10)of degree 10 is isomorphic as abstract graph to the paw.In this paper,we describe finite non-solvable groups G whose Gruenberg-Kegel graphs are isomorphic as abstract graphs to the paw in the case when G has no elements of order 6 or the vertex of degree 1 ofΓ(G)divides the order of the solvable radical of G.

关 键 词:Finite group Non-solvable group Gruenberg-Kegel graph The paw 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象