Longwave infrared multispectral image sensor system using aluminum-germanium plasmonic filter arrays Noor E  被引量:1

在线阅读下载全文

作  者:Karishma Shaik Bryce Widdicombe Dechuan Sun Sam E John Dongryeol Ryu Ampalavanapillai Nirmalathas Ranjith R Unnithan 

机构地区:[1]Department of Electrical and Electronic Engineering,University of Melbourne,Parkville,VIC 3010,Australia [2]Department of Biomedical Engineering,University of Melbourne,Parkville,VIC 3010,Australia [3]Department of Infrastructure Engineering,University of Melbourne,Parkville,VIC 3010,Australia

出  处:《Nano Research》2023年第7期10018-10025,共8页纳米研究(英文版)

基  金:This work was performed in part at the Melbourne Centre for Nanofabrication(MCN)in the Victorian Node of the Australian National Fabrication Facility(ANFF);This project received funding from the Linkage Grant from Australian Research Council(No.LP160101475)。

摘  要:A multispectral camera records image data in various wavelengths across the electromagnetic spectrum to acquire additional information that a conventional camera fails to capture.With the advent of high-resolution image sensors and color filter technologies,multispectral imagers in the visible wavelengths have become popular with increasing commercial viability in the last decade.However,multispectral imaging in longwave infrared(LWIR,8-14μm)is still an emerging area due to the limited availability of optical materials,filter technologies,and high-resolution sensors.Images from LWIR multispectral cameras can capture emission spectra of objects to extract additional information that a human eye fails to capture and thus have important applications in precision agriculture,forestry,medicine,and object identification.In this work,we experimentally demonstrate an LWIR multispectral image sensor with three wavelength bands using optical elements made of an aluminum(Al)-based plasmonic filter array sandwiched in germanium(Ge).To realize the multispectral sensor,the filter arrays are then integrated into a three-dimensional(3D)printed wheel stacked on a low-resolution monochrome thermal sensor.Our prototype device is calibrated using a blackbody and its thermal output has been enhanced with computer vision methods.By applying a state-of-theart deep learning method,we have also reconstructed multispectral images to a better spatial resolution.Scientifically,our work demonstrates a versatile spectral thermography technique for detecting target signatures in the LWIR range and other advanced spectral analyses.

关 键 词:infrared plasmonics germanium(Ge) aluminum(Al) thermal optics longwave infrared(LWIR)multispectral system 

分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象