一种基于机载点云的DEM生成方法研究  被引量:3

Study on a DEM Generation Method Based on Airborne Point Cloud

在线阅读下载全文

作  者:赵哲东 刘东柱 赵岩[2] 尹兆阳 颜新蕾 杨家铭 姜海峰 ZHAO Zhedong;LIU Dongzhu;ZHAO Yan;YIN Zhaoyang;YAN Xinlei;YANG Jiaming;JIANG Haifeng(Geomatics College of Shandong University of Science and Technology,Shandong Qingdao 266590,China;Shandong Institute of Land Surveying and Mapping,Shandong Ji'nan 250013,China)

机构地区:[1]山东科技大学测绘与空间信息学院,山东青岛266590 [2]山东省国土测绘院,山东济南250013

出  处:《山东国土资源》2023年第7期21-26,共6页Shandong Land and Resources

基  金:大学生创新创业训练计划项目(202210424006);“菁英计划”科研支持经费(0104060541613)。

摘  要:DEM即数字高程模型,是通过有限的地形高程数据实现对地面地形的数字化模拟。DEM具有许多生产方式,作为直接获取对象表面点三维坐标的现代对地观测技术,机载激光扫描在DEM构建方面具有很大优势。因此,本文研究了一种基于机载激光点云数据的DEM生成方法,该方法的关键在于机载点云的地面滤波处理。本文提出了一种改进的渐进三角网滤波方法,通过计算各点坡度以及邻域范围内的高差最大值,进行直方图统计分析,实现高度及角度阈值的自适应估计。将本文结果与人工滤波及布料滤波方法进行对比分析。实验结果表明,本文方法的结果更加贴近人工滤波处理效果,可有效提高DEM生成的精度。In this paper,a method based on 3D laser point cloud data has been introduced,which eliminates the influence of ground object points on data interpolation through progressive triangulation filtering,and interpolates the filtered point cloud to obtain DEM based on the inverse distance weighting principle.The key of this method is the filtering effect of the progressive triangulation algorithm.In this paper,a histogram is generated based on the normal vector of each point and the maximum height difference of each point within the neighborhood.The method of preserving most point clouds is adopted for parameter selection and filtering.This result has been compared and analyzed with manual filtering and fabric filtering.The experimental results show that the asymptotic triangular network filtering effect after parameter estimation is closer to the effect of manual filtering.By comparing the DEM generated by artificial filtering and progressive triangulation filtering,the RMSE value is calculated,and the results show a small difference,and the rationality of this method has been proved.

关 键 词:机载点云 地面滤波 DEM 反距离加权 

分 类 号:P208[天文地球—地图制图学与地理信息工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象