检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓小玉 王向兵 曹华珍 王流火 严洪峰 王宏宇[2] DENG Xiaoyu;WANG Xiangbing;CAO Huazhen;WANG Liuhuo;YAN Hongfeng;WANG Hongyu(Guangdong Power Grid Co.,Ltd.,Guangzhou 510699,China;Wiscom System Co.,Ltd.,Nanjing 211100,China)
机构地区:[1]广东电网有限责任公司,广东广州510699 [2]江苏金智科技股份有限公司,江苏南京211100
出 处:《电力工程技术》2023年第4期167-174,共8页Electric Power Engineering Technology
基 金:中国南方电网有限责任公司科技项目(037700KK52190023)。
摘 要:为保证同步相量测量装置(phasor measurement unit,PMU)采集数据的准确应用,须排除其量测值中的异常数据。现有PMU异常数据辨识算法存在算法复杂度高、难以在线更新、多源数据难以校准、依赖多源数据应用难度大等不足。为此,文中从PMU事件数据和异常数据模型及PMU异常数据判别信息熵定义出发,提出基于该信息熵的异常数据辨识框架。在此框架基础上,基于利用层次方法的平衡迭代规约和聚类(balanced iterative reducing and clustering using hierarchies,BIRCH)算法提出PMU异常数据辨识算法;然后,对所提出的算法进行原型实现,并针对某变电站的PMU采集数据集进行算法实验验证。实验结果表明,与一类支持向量机(one-class support vector machine,OCSVM)算法与间隙统计算法相比,文中算法的准确度及实时性均具有较强的优势。In order to ensure the accurate application of the data collected by the phasor measurement unit(PMU),it is necessary to eliminate the abnormal data in its measured values.The existing PMU abnormal data identification algorithm has the disadvantages of high algorithm complexity,difficulty in online updating,difficulty in the calibration of multi-source data,and difficulty in application relying on multi-source data.In this paper,an abnormal data identification framework is proposed based on the PMU event data and abnormal data model and the definition of PMU abnormal data identification information entropy.On the basis of the framework,a PMU abnormal data identification algorithm is proposed based on the balanced iterative reducing and clustering using hierarchies(BIRCH)algorithm.The proposed algorithm is implemented,and an algorithm experiment is carried out for the PMU dataset of a substation.The experimental results show that the proposed algorithm has better accuracy and real-time performance than one-class support vector machine(OCSVM)algorithm and gap statistic algorithm.
关 键 词:同步相量测量装置(PMU) 异常数据 事件数据 辨识框架 信息熵 流聚类
分 类 号:TM63[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.248