米波极化敏感阵列的实值MUSIC测高方法  

Height Measurement with Meter Wave Polarization Sensitive Array Based on Real⁃value MUSIC Algorithm

在线阅读下载全文

作  者:王国铉 郑桂妹[2] 陈晨[1] 王鸿帧 WANG Guoxuan;ZHENG Guimei;CHEN Chena;WANG Hongzhen(Graduate School,Air Force Engineering University,Xi′an Shannxi 710051,China;Air and Missile Defense College,Air Force Engineering University,Xi′an Shannxi 710051,China)

机构地区:[1]空军工程大学研究生院,陕西西安710051 [2]空军工程大学防空反导学院,陕西西安710051

出  处:《现代雷达》2023年第5期74-79,共6页Modern Radar

摘  要:为获得更高的相干信号角度估计精度,并提高算法可实现性,在极化敏感阵列的基础上,文中提出了一种米波极化敏感阵列的实值多重信号分类测高方法。该方法首先采用矩阵重构的方法消除多径相干信号的影响;其次,利用酉变换对接收数据进行实值处理使其变为实数数据,并利用奇异值技术降低接收数据维度及噪声对接收数据的影响;然后,通过对特征值分解获得的噪声子空间矩阵进行空间谱估计获得目标仰角;最后,利用几何关系获得目标高度。由于该方法完全用实值运算来表述,因而可以显著降低计算复杂度。仿真结果表明:该方法测高精度更高,更利于工程实现。In order to obtain better angle estimation accuracy of coherent signals and improve the realizability of the algorithm,a real⁃value multiple signal classification height measurement method for meter wave polarization sensitive array is proposed based on polarization sensitive array.Firstly,matrix reconstruction is used to eliminate the influence of multipath coherent signal.Secondly,the unitary transformation is used to process the received data into real data,and then the singular value decomposition is used to reduce the dimension of the received data and the influence of noise on the received data.Thirdly,the target elevation is obtained with the spatial spectrum estimation of the noise subspace matrix obtained by eigenvalue decomposition.Finally,the target height is obtained by geometric relationship.Since the method is completely expressed by real⁃value operation,the computational complexity can be significantly reduced.Simulation results show that the proposed method has higher accuracy of coherent signal angle estima⁃tion and is more conducive to engineering implementation.

关 键 词:极化敏感阵列 广义多重信号分类算法 最大似然 矩阵重构 实值处理 测高 

分 类 号:TN953[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象