检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘著文 杨龙飞 刘阳 王静 张帅 王海宇 LIU Zhuwen;YANG Longfei;LIU Yang;WANG Jing;ZHANG Shuai;WANG Haiyu(China Tobacco Henan Industrial Co.,Ltd.,Zhengzhou 450000;School of Management Engineering,Henan University of Engineering,Zhengzhou 451191;Business School,Zhengzhou University,Zhengzhou 450001)
机构地区:[1]河南中烟工业有限责任公司,河南郑州450000 [2]河南工程学院管理工程学院,河南郑州451191 [3]郑州大学商学院,河南郑州450001
出 处:《机械设计》2023年第5期51-57,共7页Journal of Machine Design
基 金:国家自然科学基金项目(71672209);河南中烟工业有限责任公司科技项目(XC202036)。
摘 要:为提高复杂生产过程中质量监控的效率,文中将信息熵特征提取方法与超限学习机(Extreme Learning Machine, ELM)分类算法相结合,提出了一种基于信息熵的控制图模式识别ELM模型。首先,根据控制图模式的波动情况,采用奇异谱分解提取不同模式的信息熵特征;其次,将提取的过程信号信息熵特征作为ELM模型的输入,训练控制图模式识别ELM模型;最后,通过蒙特卡洛方法模拟生成不同控制图模式信号,采用仿真试验对比分析不同识别模型的监控效率,并进一步利用实际生产数据验证所提ELM识别模型的有效性。仿真试验和实际数据分析表明,所提识别模型具有训练成本低、识别精度高的特点,能够用于实际生产制造过程的实时质量控制。In this article,in order to improve efficiency of quality monitoring in complex the production process,efforts are made to propose the Extreme Learning Machine model based on information entropy,which is used for pattern recognition of control chart,in combination with the information-entropy feature-extraction method with the classification algorithm of extreme learning machine.Firstly,according to the shift patterns of control chart,the information-entropy features of different patterns are extracted by means of singular spectrum decomposition.Secondly,the extracted information-entropy features of process signal are used as the input of the ELM model,so as to train the ELM model for pattern recognition of control chart.Finally,different pattern signals of control chart are generated with the help of Monte Carlo simulation,and then the monitoring efficiency of different recognition models is compared and analyzed by means of the simulation experiments;thus,it is verified that the ELM recognition model is effective according to the data on production.The results obtained from the simulation experiments and the data analysis show that this recognition model with the characteristics of low training cost and high accuracy in recognition can be used for realtime quality control in the actual manufacturing process.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145