Analysis of a population model with advection and an autocatalytic-type growth  

在线阅读下载全文

作  者:Valipuram Manoranjan Lewa'Alzaleq 

机构地区:[1]Department of Mathematics and Statistics Washington State University Pullman,WA 99164,USA [2]Department of Mathematics,Faculty of Science Alal-BaytUniversity Mafrag25113,Jordan

出  处:《International Journal of Biomathematics》2023年第2期199-219,共21页生物数学学报(英文版)

摘  要:This paper analyzes a population model with time-dependent advection and an autocatalytic-type growth.As opposed to a logistic growth where the rate of growth of the population decreases from the onset,an autocatalytic growth has a point of inflection where the rate of growth switches from an increasing trend to a decreasing trend.Employing the idea of Painleve property,we show that a variety of exact traveling wave solutions can be obtained for this model depending on the choice of the advection term.In particular,due to situations in resource distribution or environmental variations,if the advection is represented as a decaying function in time or an oscillating function in time,we are able to find exact solutions with interesting behavior.We also carry out a computational study of the model using an exponentially upwinded numerical scheme and illustrate the movement of the solutions and their characteristics pictorially.

关 键 词:Painleve property traveling wave solutions standing wave exponentially upwinded numerical scheme. 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象