Traveling wave solutions for a discrete diffusive epidemic model with asymptomatic carriers  

在线阅读下载全文

作  者:Ran Zhang Dan Li Hongquan Sun 

机构地区:[1]Department of Mathematics,College of Science Nanjing University of Aeronautics and Astronautics Nanjing 210016,P.R.China [2]School of Mathematical Sciences,Anhui University Hefei230601,P.R.China [3]School of Mathematics and Physics,Jiangsu University of Technology Changzhou 213001,P.R.China [4]School of Science,Jiujiang University Jiujiang 332005,P.R.China

出  处:《International Journal of Biomathematics》2023年第2期221-255,共35页生物数学学报(英文版)

基  金:the National Natural Science Foundation of China(no.12101309);the China Postdoctoral Science Foundation(no.2021M691577);the Postdoctoral Foundation of Jiangsu Province.D.Li was supported by the National Natural Science Foundation of China(nos.12171003,11971240);the Science and Technology Project of Jiangxi Provincial Department of Education(no.GJJ190923).

摘  要:This paper mainly concerns about the traveling wave solution(TwS)for a discrete diffusive epidemic model with asymptomatic carriers.Analysis of the model shows that the minimum wave speed c*exists if a threshold is greater than one.With the help of sub-and super-solutions,we find that the condition for the existence of TWS is R>1 and wave speed c>c^(*).Further,we prove that the TwS connects two different boundary steady states.Through the arguments with Laplace transform,we show there is no TWS for the model if R>1 and o<c<c^(*)or R≤1.

关 键 词:Epidemic model traveling wave solutions Lattice dynamical system Schauder's fixed point theorem asymptomatic carriers 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象