基于深度强化学习和无线充电技术的D2D-MEC网络边缘卸载框架  被引量:2

Edge Offloading Framework for D2D-MEC Networks Based on Deep Reinforcement Learningand Wireless Charging Technology

在线阅读下载全文

作  者:张乃心 陈霄睿 李安 杨乐瑶 吴华明 ZHANG Naixin;CHEN Xiaorui;LI An;YANG Leyao;WU Huaming(School of Mathematics,Tianjin University,Tianjin 300192,China;Center for Applied Mathematics,Tianjin University,Tianjin 300072,China)

机构地区:[1]天津大学数学学院,天津300192 [2]天津大学应用数学中心,天津300072

出  处:《计算机科学》2023年第8期233-242,共10页Computer Science

基  金:国家自然科学基金(62071327)。

摘  要:物联网设备中大量未被充分利用的计算资源,正是移动边缘计算所需要的。一种基于设备对设备通信技术和无线充电技术的边缘卸载框架,可以最大化利用闲置物联网设备的计算资源,提升用户体验。在此基础上,可以建立物联网设备的D2D-MEC网络模型。在该模型中,主设备根据当前环境信息和估计的设备状态信息,选择向多个边缘设备卸载不同数量的任务,并应用无线充电技术提升传输的成功率和计算的稳定性。运用强化学习方法解决任务分配和资源分配的联合优化问题,也就是最小化计算延迟、能量消耗和任务丢弃损失,最大化边缘设备利用率和任务卸载比例的优化问题。除此之外,为了适应状态空间更大的情况,提高学习速度,提出了一种基于深度强化学习的卸载方案。基于以上理论和模型,使用数学推导计算出了D2D-MEC系统的最优解及性能上限。仿真实验证明了D2D-MEC卸载模型及其卸载策略的综合性能更好,更能充分利用物联网设备的计算资源。A large amount of underutilized computing resources in IoT devices is what mobile edge computing requires.An edge offloading framework based on device-to-device communication technology and wireless charging technology can maximize the utilization of computing resources of idle IoT devices and improve user experience.The D2D-MEC network model of IoT devices can be established on this basis.In this model,the device chooses to offload multiple tasks to multiple edge devices according to the current environment information and the estimated device state.It applies wireless charging technology to increase the success rate of transmission and computation stability.The reinforcement learning method is used to solve the joint optimization allocation problem,which aims to minimize the computation delay,energy consumption,and task dropping loss as well as maximize the utilization of edge devices and the proportion of task offloading.In addition,to adapt to larger state space and improve learning speed,an offloading scheme based on deep reinforcement learning is proposed.Based on the above theory and model,the optimal solution and upper limit of performance of the D2D-MEC system are calculated by mathematical derivation.Simulation results show that the D2D-MEC offloading model and its offloading strategy have better all-around performance and can make full use of the computing resources of IoT devices.

关 键 词:移动边缘计算 D2D 强化学习 物联网 计算卸载 无线能量传输 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象