检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李素雲 陈国茜[1,2] 祝存兄 乔斌 史飞飞 曹晓云 周秉荣 LI Suyun;CHEN Guoqian;ZHU Cunxiong;QIAO Bin;SHI Feifei;CAO Xiaoyun;ZHOU Bingrong(Qinghai Province Institute of Meteorological Sciences,Xining,Qinghai 810001,China;Qinghai Province Key Laboratory of Disaster Prevention and Mitigation,Xining,Qinghai 810001,China)
机构地区:[1]青海省气象科学研究所,青海西宁810001 [2]青海省防灾减灾重点实验室,青海西宁810001
出 处:《干旱地区农业研究》2023年第4期298-306,共9页Agricultural Research in the Arid Areas
基 金:青海省科技计划项目(2021-ZJ-739)。
摘 要:土壤水分是量度干旱程度最重要的指标,如何对其有效监测与预警一直是各界致力解决的重大科学问题。基于Suomi NPP/VIIRS数据的温度植被干旱指数TVDI、归一化植被水分指数NDWI、植被状况指数VCI,分别构建了青海省东部农业区3种土壤水分监测模型,利用连续的野外定点观测数据及生态站点观测数据进行模型检验,并在2017年夏旱过程进行了应用检验。结果表明:2012—2016年模型回代检验中,TVDI指数模型表现最优(RMSE为4.4%),其次为VCI指数模型(RMSE为4.7%),NDWI指数模型表现最差(RMSE为5.2%);2018—2020年夏季互助遥感检验场定点观测检验中,TVDI指数模型表现最好(RMSE为3.8%),VCI指数模型次之(RMSE为5.0%),NDWI指数模型表现最差(RMSE为8.8%);2017年夏季干旱过程中,TVDI指数模型反演的旱情发展过程及分布范围与实际旱情情况相符,而NDWI指数模型反演的旱情分布范围明显偏小,VCI指数模型甚至不能反映旱情缓解、解除期的变化。Soil moisture is a most important index to measure the degree of drought and continues to bea major scientific problem for effective monitoring and early warning about soil moisture for all walks of life.The normalized difference water index,vegetation condition index and temperature-vegetation dryness index were calculated based on Suomi NPP/VIIRS to construct three soil moisture monitoring models in the eastern agricultural region of Qinghai Province.Models were tested using continuous field fixed-point observation data and site observation data,and application tests were performed in the summer drought of 2017.The results showed that the TVDI model was the best(RMSE was 4.4%),the VCI model was the second(RMSE was 4.7%)and the NDWI model was the worst(RMSE was 5.2%)in the back-generation test during 2012-2016.When the three models applied to the field survey points in Huzhu County of Qinghai Province using the remote sensing inspection during 2018 to 2020,TVDI model performed best(RMSE was 3.8%),VCI model took the second place(RMSE was 5.0%)and NDWI model was the worst(RMSE was 8.8%).The drought distribution range retrieved by TVDI model was consistent with the actual occurrence and development and mitigation process.The changes of drought mitigation or relief period were not reflectedby VCI model in drought distribution and the drought area retrieved by NDWI model was smaller in the summer drought of 2017.
关 键 词:Suomi NPP 土壤水分 温度植被干旱指数 归一化植被水分指数 植被状况指数
分 类 号:S127[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3