基于知识图谱的能源区块链网络数据存储虚拟化研究  

Research on Data Storage Virtualization of Energy Blockchain Network Based on Knowledge Graph

在线阅读下载全文

作  者:李蕾[1] 孙歆 LI Lei;SUN Xin(Zhejiang Chang Zheng college of profession and technology,Hangzhou,310023,China;Electric Power Research Institute of State Grid Zhejiang Electric Power Co.,Ltd.,Hangzhou 310000,China)

机构地区:[1]浙江长征职业技术学院,杭州310023 [2]国网浙江省电力有限公司电力科学研究院,杭州310000

出  处:《自动化与仪器仪表》2023年第6期129-132,137,共5页Automation & Instrumentation

基  金:浙江省教育厅2021年度高校国内访问工程师“校企合作项目”(项目编号:FG2021295):“软件开发类课程云端虚拟仿真实训平台建设与应用研究”的研究成果。

摘  要:为了降低物理存储压力,实现存储能源的有效管理,设计一种基于知识图谱的能源区块链网络数据存储虚拟化方法。根据能源区块链的连接结构创建网络数据存储虚拟机;利用ForeSpider数据采集软件采集网络数据,通过知识图谱确定网络数据存储结构关系,在虚拟化存储智能合约约束下实现能源区块链网络数据存储虚拟化转换。通过与传统虚拟化方法的对比得出结论:设计方法的平均虚拟化数据丢失量和转换错误率为0.035 GB和2.28%,同时虚拟存储数据的读取程序速率在6.5 GB/s~10.3 GB/s区间内,写入程序速率在6.5 GB/s~11 GB/s区间内,读写速率得到明显提升,具有一定应用价值。In order to reduce the pressure of physical storage and realize the effective management of stored energy,this paper de-signs a data storage virtualization method of energy blockchain network based on knowledge map.Creating a network data storage vir-tual machine according to the connection structure of the energy blockchain,network data is collected by using the data acquisition software of ForeSpider,and the storage structure relationship of network data is determined by knowledge map,and the virtualization transformation of network data storage of energy blockchain is realized under the constraint of virtual storage intelligent contract.Com-pared with the traditional virtualization method,it is concluded that the average virtualization data loss and conversion error rate of the design method are 0.035GB and 2.28%,and the reading program rate of virtual storage data is in the range of 6.5-10.3GB/s,and the writing program rate is in the range of 6.5-11GB/s,so the reading and writing rate is obviously improved,which has certain application value.

关 键 词:知识图谱 能源存储 区块链网络数据 虚拟化存储 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象