检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shraddha Suratkar Sayali Bhiungade Jui Pitale Komal Soni Tushar Badgujar Faruk Kazi
出 处:《Journal of Control and Decision》2023年第2期198-214,共17页控制与决策学报(英文)
摘 要:Deep-Fake is an emerging technology used in synthetic media which manipulates individuals in existing images and videos with someone else’s likeness.This paper presents the comparative study of different deep neural networks employed for Deep-Fake video detection.In the model,the features from the training data are extracted with the intended Convolution Neural Network model to form feature vectors which are further analysed using a dense layer,a Long Short-Term Memoryand Gated Recurrent by adopting transfer learning with fine tuning for training the models.The model is evaluated to detect Artificial Intelligence based Deep fakes images and videos using benchmark datasets.Comparative analysis shows that the detections are majorly biased towards domain of the dataset but there is a noteworthy improvement in the model performance parameters by using Transfer Learning whereas Convolutional-Recurrent Neural Network has benefits in sequence detection.
关 键 词:Deep-FAKES Convolution Neural Network(CNN) Generator Adversarial Network(GAN) Auto encoders Recurrent Neural Network(RNN) Long Short-Term Memory(LSTM)
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222