Social Engineering Attack-Defense Strategies Based on Reinforcement Learning  

在线阅读下载全文

作  者:Rundong Yang Kangfeng Zheng Xiujuan Wang Bin Wu Chunhua Wu 

机构地区:[1]School of Cyberspace Security,Beijing University of Posts and Telecommunications,Beijing,100876,China [2]School of Computer Science,Beijing University of Technology,Beijing,100124,China

出  处:《Computer Systems Science & Engineering》2023年第11期2153-2170,共18页计算机系统科学与工程(英文)

基  金:funded by the Beijing Natural Science Foundation (4202002).

摘  要:Social engineering attacks are considered one of the most hazardous cyberattacks in cybersecurity,as human vulnerabilities are often the weakest link in the entire network.Such vulnerabilities are becoming increasingly susceptible to network security risks.Addressing the social engineering attack defense problem has been the focus of many studies.However,two main challenges hinder its successful resolution.Firstly,the vulnerabilities in social engineering attacks are unique due to multistage attacks,leading to incorrect social engineering defense strategies.Secondly,social engineering attacks are real-time,and the defense strategy algorithms based on gaming or reinforcement learning are too complex to make rapid decisions.This paper proposes a multiattribute quantitative incentive method based on human vulnerability and an improved Q-learning(IQL)reinforcement learning method on human vulnerability attributes.The proposed algorithm aims to address the two main challenges in social engineering attack defense by using a multiattribute incentive method based on human vulnerability to determine the optimal defense strategy.Furthermore,the IQL reinforcement learning method facilitates rapid decision-making during real-time attacks.The experimental results demonstrate that the proposed algorithm outperforms the traditional Qlearning(QL)and deep Q-network(DQN)approaches in terms of time efficiency,taking 9.1%and 19.4%less time,respectively.Moreover,the proposed algorithm effectively addresses the non-uniformity of vulnerabilities in social engineering attacks and provides a reliable defense strategy based on human vulnerability attributes.This study contributes to advancing social engineering attack defense by introducing an effective and efficient method for addressing the vulnerabilities of human factors in the cybersecurity domain.

关 键 词:Social engineering game theory reinforcement learning Q-LEARNING 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象