机构地区:[1]中国农业科学院农业资源与农业区划研究所北方干旱半干旱耕地高效利用全国重点实验室,北京100081 [2]宁夏大学物理与电子电气工程学院,宁夏银川750021 [3]中国科学院空天信息创新研究院遥感科学国家重点实验室,北京100094 [4]北京大学环境科学与工程学院,北京100871 [5]中国科学院国家空间科学中心,北京100190 [6]国家卫星气象中心,北京100081 [7]国家气象中心,北京100081 [8]北京师范大学地理科学部,北京100875
出 处:《智慧农业(中英文)》2023年第2期161-171,共11页Smart Agriculture
基 金:风云卫星应用先行计划(FY-APP-2022.0205);第二次青藏高原综合科学考察研究(2019QZKK0206XX-02);遥感科学国家重点实验室开放基金(OFSLRSS202201)。
摘 要:[目的/意义]人工智能(Artificial Intelligence,AI)技术已在学术和工程应用领域掀起了研究高潮,在地球物理参数和农业气象遥感参数反演方面也表现出了强大的应用潜力。目前大部分AI技术在地学和农学的应用还是“黑箱”,没有物理意义或缺乏可解释性及通用性。为了促进AI在地学和农学的应用和培养交叉学科的人才,本研究提出基于AI耦合物理和统计方法的地球物理参数反演范式理论。[方法]首先基于物理能量平衡方程进行物理逻辑推理,从理论上构造反演方程组,然后基于物理推导构建泛化的统计方法。通过物理模型模拟获得物理方法的代表性解以及利用多源数据获得统计方法代表性的解作为深度学习的训练和测试数据库,最后利用深度学习进行优化求解。[结果和讨论]判定形成具有通用性和物理可解释的范式条件包括:(1)输入与输出变量(参数)之间必须存在因果关系;(2)输入和输出变量(参数)之间理论上可以构建闭合的方程组(未知数个数少于或等于方程组个数),也就是说输出参数可以被输入参数唯一确定。如果输入参数(变量)和输出参数(变量)之间存在很强的因果关系,则可以直接使用深度学习进行反演。如果输入参数和输出参数之间存在弱相关性,则需要添加先验知识来提高输出参数的反演精度。此外,本研究以农业气象遥感中的关键参数地表温度、发射率、近地表空气温度和大气水汽含量联合反演作为案例对理论进行了证明,分析结果表明本理论是可行的,并且可以辅助优化设计卫星传感器波段组合。[结论]本理论和判定条件的提出在地球物理参数反演史上具有里程碑意义。[Objective] Deep learning is one of the most important technologies in the field of artificial intelligence,which has sparked a research boom in academic and engineering applications.It also shows strong application potential in remote sensing retrieval of geophysical parameters.The cross-disciplinary research is just beginning,and most deep learning applications in geosciences are still "black boxes",with most applications lacking physical significance,interpretability,and universality.In order to promote the application of artificial intelligence in geosciences and agriculture and cultivate interdisciplinary talents,a paradigm theory for geophysical parameter retrieval based on artificial intelligence coupled physics and statistical methods was proposed in this research.[Methods] The construction of the retrieval paradigm theory for geophysical parameters mainly included three parts:Firstly,physical logic deduction was performed based on the physical energy balance equation,and the inversion equation system was constructed theoretically which eliminated the ill conditioned problem of insufficient equations.Then,a fuzzy statistical method was constructed based on physical deduction.Representative solutions of physical methods were obtained through physical model simulation,and other representative solutions as the training and testing database for deep learning were obtained using multi-source data.Finally,deep learning achieved the goal of coupling physical and statistical methods through the use of representative solutions from physical and statistical methods as training and testing databases.Deep learning training and testing were aimed at obtaining curves of solutions from physical and statistical methods,thereby making deep learning physically meaningful and interpretable.[Results and Discussions] The conditions for determining the formation of a universal and physically interpretable paradigm were:(1) There must be a causal relationship between input and output variables(parameters);(2) In theory,a closed
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...