检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马跃 郭明明[1,2] 孙博伦 田野 宋文艳 乐嘉陵[1,2] MA Yue;GUO Mingming;SUN Bolun;TIAN Ye;SONG Wenyan;LE Jialing(School of Information Engineering,Southwest University of Science and Technology,Mianyang Sichuan 621010,China;Science and Technology on Scramjet Laboratory,China Aerodynamics Research and Development Center,Mianyang Sichuan 621000,China;School of Power and Energy,Northwestern Polytechnical University,Xi’an 710129,China)
机构地区:[1]西南科技大学信息工程学院,四川绵阳621010 [2]中国空气动力研究与发展中心高超声速冲压发动机技术重点实验室,四川绵阳621000 [3]西北工业大学动力与能源学院,西安710129
出 处:《航空动力学报》2023年第7期1604-1614,共11页Journal of Aerospace Power
基 金:四川省科技计划项目(2023YFG0336)。
摘 要:针对于传统的航空发动机燃烧室设计过程计算周期长,加工和试验成本高,制约发动机设计周期的问题,基于航空发动机燃烧室模型,结合POD-PCE-Kriging(本征正交分解-多项式混沌展开-Kriging)模型和粒子群优化(PSO)算法开展了燃烧性能代理模型的构建和多目标优化设计。通过试验,应用POD-PCE-Kriging模型预测结果与一维程序计算结果进行对比分析,针对于燃烧效率和总压损失预测值的方均根误差分别为0.006 3%和0.122 7%。对设计变量参数开展寻优,并对获取的Pareto最优解集进行了分析,为满足性能指标的先进航空发动机燃烧室设计提供了物理见解,可以快速准确获得满足最优性能的设计参数,缩短航空发动机的研制周期。In view of the traditional aero-engine combustor design process with long calculation cycle,high processing test and cost which restricts the engine design cycle,based on the aero-engine combustor model,POD-PCE-Kriging(proper orthogonal decomposition-polynomial chaotic expansion-Kriging)model and particle swarm optimization(PSO)algorithms were combined to construct the combustion performance surrogate model and carry out multi-objective optimization design.Through the test,the predicted results of POD-PCE-Kriging model were compared with the calculated results of one-dimensional program,and the root mean square errors of the predicted values of combustion efficiency and total pressure loss were 0.0063%and 0.1227%,respectively.Optimization search was carried out for the design variables,and the obtained Pareto optimal solution set was analyzed to provide physical insight into the design of advanced aero-engine combustor to meet the performance specifications,which can quickly and accurately obtain the design parameters to meet the optimal performance and accelerate the development cycle of aero-engine.
关 键 词:航空发动机燃烧室设计 代理模型 POD-PCE-Kriging模型 粒子群优化算法 多目标优化
分 类 号:V231[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7