Weighted Variation Inequalities for Singular Integrals and Commutators in Rearrangement Invariant Banach and Quasi-Banach Spaces  

在线阅读下载全文

作  者:Jia Wei TAN Qing Ying XUE 

机构地区:[1]School of Mathematical Sciences,Beijing Normal University,Laboratory of Mathematics and Complex Systems,Ministry of Education,Beijing 100875,China

出  处:《Acta Mathematica Sinica,English Series》2023年第7期1389-1413,共25页数学学报(英文版)

基  金:supported partly by the National Key R&D Program of China (Grant No.2020YFA0712900);NNSF of China (Grant Nos. 11871101, 12271041)。

摘  要:In order to study the boundedness of some operators in general function spaces which include Lorentz spaces and Orlicz spaces as special examples,Lorentz introduced a new space called rearrangement invariant Banach function spaces,denoted by RIBFS.It is shown in this paper that variation operators of singular integrals and their commutators are bounded on RIBFS whenever the kernels satisfy the L~r-H?rmander conditions.Moreover,we obtain some quantitative weighted bounds in the quasi-Banach spaces and modular inequalities for above variation operators and their commutators.

关 键 词:Variation operators singular integrals COMMUTATORS sparse operators rearrangement invariant Banach function spaces 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象