检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:葛澍 王琳 高峰 李行政 GE Shu;WANG Lin;GAO Feng;LI Xingzheng(China Mobile Communications Group Co.,Ltd.,Beijing 100032,China;China Mobile Group Design Institute Co.,Ltd.,Beijing 100080,China)
机构地区:[1]中国移动通信集团有限公司,北京100032 [2]中国移动通信集团设计院有限公司,北京100080
出 处:《移动通信》2023年第7期104-110,共7页Mobile Communications
摘 要:在5G网络干扰优化过程中发现,目前2.6 GHz频段面临无线视频监控干扰问题,严重影响5G网络质量。从问题产生的根本原因出发,结合一线干扰排查经验提出了一种融合干扰信号特征的卷积神经网络无线视频监控干扰识别算法,并使用现网数据进行算法验证,证明可快速、精准识别受视频监控干扰的5G小区,通过网管数据分析为干扰定位提供重要的先验信息,提升此类小区干扰定位效率。During the process of optimizing interference in 5G networks,the challenge of wireless video surveillance interference in the 2.6 GHz frequency band has been recognized as a critical issue,with a severe impact on the quality of the 5G network.This research aims to investigate the underlying causes of this problem and proposes an advanced algorithm for wireless video surveillance interference recognition that integrates the distinctive characteristics of interference signals using convolutional neural networks.Rigorous validation using authentic network data substantiates the algorithm's exceptional capability to swiftly and accurately identify the specific 5G cells that are adversely affected by video surveillance interference.Additionally,by analyzing network management data,the algorithm provides important prior information for interference localization,thereby improving the efficiency of interference localization in such cells.
分 类 号:TN915[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49