量子积分的Ostrowski型不等式  被引量:1

Ostrowski type inequalities for quantum

在线阅读下载全文

作  者:时统业[1] SHI Tongye(Naval Command College of People’s Liberation Army,Nanjing Jiangsu 211800)

机构地区:[1]中国人民解放军海军指挥学院,江苏南京211800

出  处:《首都师范大学学报(自然科学版)》2023年第4期9-17,共9页Journal of Capital Normal University:Natural Science Edition

摘  要:针对一阶q导数有界的函数,利用q微积分平均值不等式,建立了q-Ostrowski不等式,加强了已有文献给出的q-Ostrowski不等式,并将结果移植到qb积分。针对一阶q导数和一阶qb导数都有界的函数,利用q微积分平均值不等式,建立了同时涉及q积分和qb积分的Ostrowski型不等式,推广了经典的Ostrowski不等式。针对二阶q可微且二阶qb可微的函数,利用恒等式,通过引入参数求最值,建立了同时涉及q积分和qb积分的Ostrowski型不等式。In this paper,q-Ostrowski inequality is established for functions with bounded first order q-derivatives by means of mean value inequality for q-calculus,which strengthens q-Ostrowski inequality given in previous literature,and the result is transferred to qb-integral.Ostrowski inequality involving both q-integral and qb-integral is established for functions with bounded first order q-derivatives and qb-derivatives,and the classical Ostrowski inequality is generalized.For second order q-differentiable and second order qb-differentiable functions,using the identities and the method of introducing parameter to find the minimum,Ostrowski type inequality involving both q-integral and qb-integral is established.

关 键 词:Ostrowski型不等式 q积分 qb积分 量子微积分平均值不等式 

分 类 号:O178[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象