检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Tian-De Guo Yan Liu Cong-Ying Han
机构地区:[1]School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 101408,China [2]School of Statistics and Data Science,KLMDASR,LEBPS,and LPMC,Nankai University,Tianjin 300071,China
出 处:《Journal of the Operations Research Society of China》2023年第2期245-275,共31页中国运筹学会会刊(英文)
基 金:the National Key R&D Program of China(No.2021YFA1000403);the National Natural Science Foundation of China(Nos.11731013,12101334 and U19B2040);the Natural Science Foundation of Tianjin(No.21JCQNJC00030);the Fundamental Research Funds for the Central Universities。
摘 要:Numerous intriguing optimization problems arise as a result of the advancement of machine learning.The stochastic first-ordermethod is the predominant choicefor those problems due to its high efficiency.However,the negative effects of noisy gradient estimates and high nonlinearity of the loss function result in a slow convergence rate.Second-order algorithms have their typical advantages in dealing with highly nonlinear and ill-conditioning problems.This paper provides a review on recent developments in stochastic variants of quasi-Newton methods,which construct the Hessian approximations using only gradient information.We concentrate on BFGS-based methods in stochastic settings and highlight the algorithmic improvements that enable the algorithm to work in various scenarios.Future research on stochastic quasi-Newton methods should focus on enhancing its applicability,lowering the computational and storage costs,and improving the convergence rate.
关 键 词:Stochastic quasi-Newton methods BFGS Large-scale machine learning
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7