Approximate Customized Proximal Point Algorithms for Separable Convex Optimization  

在线阅读下载全文

作  者:Hong-Mei Chen Xing-Ju Cai Ling-Ling Xu 

机构地区:[1]School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,Jiangsu,China [2]Jiangsu Key Laboratory for NSLSCS,Nanjing Normal University,Nanjing 210023,Jiangsu,China

出  处:《Journal of the Operations Research Society of China》2023年第2期383-408,共26页中国运筹学会会刊(英文)

基  金:the National Natural Science Foundation of China(Nos.11971238 and 11871279)。

摘  要:Proximal point algorithm(PPA)is a useful algorithm framework and has good convergence properties.Themain difficulty is that the subproblems usually only have iterative solutions.In this paper,we propose an inexact customized PPA framework for twoblock separable convex optimization problem with linear constraint.We design two types of inexact error criteria for the subproblems.The first one is absolutely summable error criterion,under which both subproblems can be solved inexactly.When one of the two subproblems is easily solved,we propose another novel error criterion which is easier to implement,namely relative error criterion.The relative error criterion only involves one parameter,which is more implementable.We establish the global convergence and sub-linear convergence rate in ergodic sense for the proposed algorithms.The numerical experiments on LASSO regression problems and total variation-based image denoising problem illustrate that our new algorithms outperform the corresponding exact algorithms.

关 键 词:Inexact criteria Proximal point algorithm Alternating direction method of multipliers Separable convex programming 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象