检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈纤 邹龙庆[1] 李明磊 唐友福[1] 缪皓 韩吉程 Chen Xian;Zou Longqing;Li Minglei;Tang Youfu;Miao Hao;Han Jicheng(School of Mechanical Science and Engineering,Northeast Petroleum University;CNPC Engineering,Procurement&Equipment Management Department;CNPC Daqing Drilling&Exploration Engineering Co.,Ltd.)
机构地区:[1]东北石油大学机械科学与工程学院 [2]中国石油天然气集团有限公司工程和物装管理部 [3]大庆钻探工程公司
出 处:《石油机械》2023年第8期100-107,共8页China Petroleum Machinery
基 金:国家青年科学基金项目“齿轮齿条钻机起升系统与受压钻柱非线性耦合动力机理研究”(2018QNL-28)。
摘 要:长期现场监测的滚动轴承大数据往往故障样本较少且受噪声和监测误差的影响,有用故障信息容易淹没在正常样本数据中,特别对于变工况和不同场景下的数据集服从不同分布的问题,如果直接利用基于深度学习的故障诊断方法进行识别,容易造成误判或漏判。为此,提出一种基于联合对抗深度迁移的滚动轴承故障诊断方法。该方法融合了深度学习和迁移学习的各自优点。首先利用具有批量归一化层的卷积神经网络,提取实验室有标签源域数据和现场无标签目标域数据的不变特征,然后通过广义切片Wasserstein距离来度量域间数据的联合分布差异性,并采用softmax激活函数作为域判别器和分类器实现识别。最后通过凯斯西储大学滚动轴承数据集、西安交通大学滚动轴承数据集和现场滚动轴承数据集进行不同诊断方法之间的对比、验证和应用研究。研究结果表明,所提方法在滚动轴承数据集的平均分类准确率能达到99%,相比于其他方法具有更高的分类精度和更好的迁移性能,可为滚动轴承故障诊断提供一种新的有效方法。The big data of rolling bearing monitored on site for a long time are often limited in fault samples and affected by noise and monitoring errors,so the useful fault information is easily overlooked in the normal sample data.Especially,under variable working conditions and different scenarios,data set obey different distributions.Therefore,if the deep learning based fault diagnosis method is directly used for identification,misjudgement or missing judgment easily occurs.This paper presents a method for rolling bearing fault diagnosis based on joint adversariel deep transfer learning,which combines the advantages of deep learning and transfer learning.Firstly,the convolutional neural networks(CNN)with batch normalization layer were used to extract the invariant features of laboratory labeled source domain data and field unlabeled target domain data.Then,the generalized slice Wasserstein distance was used to measure the joint distribution difference of data between domains,and the softmax activation function was used as the domain discriminator and classifier to realize recognition.Finally,the rolling bearing data set of Case Western Reserve University(CWRU),Xi'an Jiaotong University(XJTU)and field were used to conduct comparison,verification and application research of different diagnostic methods.The results show that the average classification accuracy of the proposed method in the rolling bearing data set reaches 99%,which has higher classification accuracy and better transfer performance than other methods,and provides a new and effective method for rolling bearing fault diagnosis.
关 键 词:滚动轴承 联合对抗 深度迁移 故障诊断 广义切片 Wasserstein距离
分 类 号:TE93[石油与天然气工程—石油机械设备]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.191