The Holocene environmental changes revealed from the sediments of the Yarkov sub-basin of Lake Chany,south-western Siberia  

在线阅读下载全文

作  者:S.K.Krivonogov A.N.Zhdanova P.A.Solotchin A.Y.Kazansky V.V.Chegis Z.Liu M.Song S.V.Zhilich N.A.Rudaya X.Cao O.V.Palagushkina L.B.Nazarova L.S.Syrykh 

机构地区:[1]Institute of Geology and Mineralogy,Russian Academy of Sciences,Siberian Branch,Novosibirsk,Russia [2]Novosibirsk State University,Novosibirsk,Russia [3]Korkyt Ata Kyzylorda University,Kyzylorda,Kazakhstan [4]Moscow State University,Moscow,Russia [5]Geological Institute,Russian Academy of Sciences,Moscow,Russia [6]Pushkov Institute of Terrestrial Magnetism,Ionosphere and Radio Wave Propagation,Russian Academy of Sciences,Troitsk,Russia [7]Department of Earth Sciences,The University of Hong Kong,Hong Kong,China [8]State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Sciences,Xi’an,China [9]Institute of Archaeology and Ethnography,Russian Academy of Sciences,Siberian Branch,Novosibirsk,Russia [10]Tomsk State University,Tomsk,Russia [11]Alpine Paleoecology and Human Adaptation Group(ALPHA),State Key Laboratory of Tibetan Plateau Earth System,Environment and Resources(TPESER),Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing,China [12]Volga Region Federal University,Kazan,Russia [13]Krasnoyarsk Science Center,Russian Academy of Sciences,Siberian Branch,Krasnoyarsk,Russia [14]Herzen State Pedagogical University,St.Petersburg,Russia

出  处:《Geoscience Frontiers》2023年第2期133-153,共21页地学前缘(英文版)

基  金:The biomarker analysis and all organic matter related interpretations were made in favor of the joint Russia-China research project,RFBR no.21-55-53037 and NSFC no.42111530031;The lake level changes were investigated in favor of the RFBR project No.19-29-05085;Numerical reconstruction of climate was made in the frame of ANSO Collaborative Research(ANSO-CR-PP-2021-02);The contribution by Natalia Rudaya matches interests of the RSF project no.20-17-00110;the Tomsk State University Development Program(Priority 2030);financed by National Natural Science Foundation of China(grant no.41988101);the Sino-German Mobility Program(grant no.M-0359);Diatom and chironomid analyses were funded by the RSF project No.20-17-00135;Databases developed with the support of the RSF No.22-17-00185 and 22-17-00113 projects were used for quantitative environmental reconstructions(WD and T July)and supplementary statistical research.

摘  要:Lake Chany is the largest endorheic lake in Siberia whose catchment is entirely on the territory of Russia.Its geographical location on the climate-sensitive boundary of wet and dry landscapes provides an opportunity to gain more knowledge about environmental changes in the West Siberian interior during the Holocene and about the evolution of the lake itself.Sediment cores obtained from the Yarkov subbasin of the lake in 2008 have been comprehensively studied by a number of approaches including sedimentology and AMS dating,pollen,diatom and chironomid analyses(with statistical interpretation of the results),mineralogy of authigenic minerals and geochemistry of plant lipids(biomarker analysis.).Synthesis of new results presented here and published data provides a good justification for our hypothesis that Lake Chany is very young,no older than 3.6 ka BP.Before that,between 9 and 3.6 ka BP,the Chany basin was a swampy landscape with a very low sedimentation rate;it could not be identified as a water body.In the early lake phase,between 3.6 and 1.5 ka BP,the lake was shallow,1.2–3.5 m in depth,and it rose to its modern size,up to 6.5 m in depth,during the last millennium.Our data reveal important changes in the understanding of the history of this large endorheic lake,as before it was envisioned as a large lake with significant changes in water level since ca.14 ka BP.In addition to hydrology,our proxies provide updates and details of the regional vegetation and climate change since ca.4 ka BP in the WestSiberian forest-steppe and steppe.As evolution of the Chany basin is dependent on hydroclimatic changes in a large region of southern West Siberia,we compare lake-level change and climate-change proxies from the other recently and most comprehensively studied lakes of the region.

关 键 词:Saline lake Multiproxy study HOLOCENE Climate Environment West Siberia 

分 类 号:P512.2[天文地球—地质学] P59

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象