机构地区:[1]蚌埠医学院第一附属医院,安徽蚌埠233004 [2]安徽中医药大学第一附属医院,安徽合肥230031
出 处:《中华中医药学刊》2023年第6期20-25,共6页Chinese Archives of Traditional Chinese Medicine
基 金:安徽省新冠病毒科研应急攻关专项公开竞争项目(2022e07020082)。
摘 要:目的分析影响奥密克戎新型冠状病毒感染(简称新冠感染)患者病毒核酸转阴时间的影响因素,并构建临床预测模型。方法收集上海崇明区花博园复兴馆方舱医院2022年4月—2022年5月期间收治的156例奥密克戎新型冠状病毒感染患者的临床资料,采用单因素和多因素Logistic回归分析筛选影响新冠病毒感染患者核酸转阴时间的独立危险因素,建立核酸转阴时间风险预测模型,并构建列线图。采用Bootstrap法进行内部验证。通过受试者工作特征(ROC)曲线、Calibration plot验证预测模型的预测效能。结果多因素Logistic回归分析结果显示,前期症状[OR=2.649,95%CI(1.004,6.992)]、基础疾病[OR=5.382,95%CI(1.509,19.197)]、入院时黄腻舌苔[OR=6.513,95%CI(1.954,21.713)]是影响患者核酸转阴时间的独立的影响因素(P<0.05)。基于筛选出以上独立危险因素构建预测模型,该模型显示出较高的预测能力,训练集ROC曲线下面积为0.817,P<0.001,验证集ROC曲线下面积为0.780,P<0.001,表明该预测模型拟合度较高;该预测模型校正曲线接近参考曲线,表明实际观察和列线图预测的预测概率具有良好的一致性。结论前期症状、基础疾病、入院时黄腻舌苔是影响新冠病毒感染患者核酸转阴时间的独立危险因素,该预测模型具有较好的评估效能,为临床早期干预、缩短病程提供参考依据。Objective To analyze the risk factors affecting the time of viral nucleic acid transforming negative in patients with Omicron infection and build a clinical prediction model.Methods Clinical data of 156 Omicron-infected patients were collected from April to May 2022 in Shanghai Chongming District Huaboyuan Fuxing Pavilion Temporary Cabin Hospital.Univariate and multivariate Logistic regression analysis was used to screen the independent risk factors affecting the time of nucleic acid transfor⁃ming negative in patients with Omicron infection.The risk prediction model of the time of nucleic acid transforming negative was established,and a column graph was constructed.Bootstrap method was used for internal verification.Receiver Operating Charac⁃teristic(ROC)curve and Calibration plot was used to verify the predictive efficiency of the model.Results Multivariate Logistic regression analysis showed that the early symptoms[OR=2.649,95%CI(1.004,6.992)],underlying diseases[OR=5.382,95%CI(1.509,19.197)]and yellow greasy tongue coating on admission[OR=6.513,95%CI(1.954,21.713)]were inde⁃pendent factors affecting the time of nucleic acid transforming negative(P<0.05).Based on the above independent risk factors,the prediction model was constructed,and the model showed high prediction ability.The area under ROC curve of the training set was 0.817(P<0.001).The area under ROC curve of the verification set was 0.780(P<0.001),indicating that the prediction model had a high degree of fit.The correction curve of the prediction model was close to the reference curve,which indicated that the prediction probability of the actual observation and the column graph prediction had a good agreement.Conclusion The early symptoms,underlying diseases and greasy tongue coating on admission were independent factors affecting the time of nucleic acid transforming negative in patients with Omicron infection.The prediction model has good evaluation efficacy and provides refer⁃ence for early clinical intervention to shorten the course of dis
分 类 号:R259.631[医药卫生—中西医结合] R511[医药卫生—中医内科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...