问卷分割的有效性和最优样本量分配方法研究  

Research on Effectiveness and Optimal Sample Size Allocation Method in Split Questionnaire Design

在线阅读下载全文

作  者:王小宁[1,2] WANG Xiao-ning(State Key Laboratory of Media Convergence and Communication,Communication University of China,Beijing 100024,China;School of Data Science and Media Intelligence,Communication University of China,Beijing 100024,China)

机构地区:[1]媒体融合与传播国家重点实验室(中国传媒大学),北京100024 [2]中国传媒大学数据科学与智能媒体学院,北京100024

出  处:《数理统计与管理》2023年第4期611-625,共15页Journal of Applied Statistics and Management

基  金:全国统计科研重点项目(2020LZ27);中国传媒大学中央高校基本科研业务费专项资金(CUC200F08,CUC19ZD002)。

摘  要:近年来,随着调查问卷的无回答率逐渐增高,导致问卷调查的费用提高和精度降低,而问卷分割技术因其能够提高抽样效率而渐渐成为调查机构的备选之一。本文在结合问卷分割技术的基础上,分析了问卷分割技术对普通调查的优势与调查变量间的相关系数、调查的固定花费、不同数据项之间的方差之比以及不同数据项之间的调查费用之比。同时结合问卷分割方法的优势得出了在方差限制的情况下最小化花费和在经费一定的情况下最小化方差两种情况下的最优样本分配方案,并结合模拟数据进行了对比分析。为相关机构采用问卷分割技术提升抽样效率提供了一个可行的参考方案。In recent years,as the non-response rate of the questionnaire has gradually increased,the cost and accuracy of the questionnaire survey have increased,and the split questionnaire design as gradually become one of the choices for survey institutions because it can improve sampling efficiency.Based on the combination of questionnaire segmentation technology,this paper analyzes the advantages of questionnaire segmentation technology on common surveys and the correlation coefficient between survey variables,the fixed cost of surveys,the ratio of variance between different data items,and the survey between different data items cost ratio.At the same time,combining the advantages of the split questionnaire design,we obtained the optimal sample allocation scheme under the two conditions of minimizing the cost under the condition of variance and minimizing the variance under the condition of certain funds,and conducted a comparative analysis based on the simulation data.It provides a feasible reference scheme for relevant institutions to use questionnaire segmentation technology to improve sampling efficiency.

关 键 词:问卷分割 样本量 抽样效率 

分 类 号:C811[社会学—统计学] O212[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象