Rapid self-healing,self-adhesive,anti-freezing,moisturizing,antibacterial and multi-stimuli-responsive PVA/starch/tea polyphenol-based composite conductive organohydrogel as flexible strain sensor  被引量:4

在线阅读下载全文

作  者:Tao Ke Li Zhao Xin Fan Haibin Gu 

机构地区:[1]Key Laboratory of Leather Chemistry and Engineering of Ministry of Education,Sichuan University,Chengdu 610065,China [2]National Engineering Research Center of Clean Technology in Leather Industry,Sichuan University,Chengdu 610065,China

出  处:《Journal of Materials Science & Technology》2023年第4期199-212,共14页材料科学技术(英文版)

基  金:This work is financed by the National Natural Science Founda-tion of China(No.21978180).We appreciate the valuable help of Dr.Jinwei Zhang from the College of Biomass Science and Engineering of Sichuan University and Hui Wang from the Analytical&Testing Center of Sichuan University.We thank eceshi(www.eceshi.com)for the great help in SEM analysis.

摘  要:The complexity of application environment stimulates the development of wearable devices based on functional hydrogels.Among all the promising performances,self-healing and self-adhesion properties are ideal for hydrogel sensors,which can guarantee good accuracy,comfort and long service life.However,it is still a challenge to achieve simultaneous self-healing and self-adhesion in different environments(in the air,underwater and at low temperatures).Herein,a feasible new strategy was successfully carried out to prepare a starch-based composite conductive organohydrogel based on the reversible borate ester bonds formed by complexing starch/polyvinyl alcohol(PVA)/tea polyphenol(TP)with borax,and multiple hydrogen-bond interactions among PVA,starch,TP and ethylene glycol(EG).Silver nanoparticles(Ag-NPs),reduced and stabilized by TP,and MWCNTs(multi-walled carbon nanotubes)were introduced into the cross-linking networks to endow the resulting PBSTCE organohydrogel with considerable antibacterial property and conductivity,respectively.The organohydrogel possessed rapid self-healing(HE(self-healing efficiency)=96.07%in 90 s,both in the air and underwater,also at-20℃),considerable self-adhesion(both in the air and underwater,also at-20℃),remarkable stretchability(814%of elongation),anti-freezing(-20℃)and moisture-retention abilities,antibacterial activity,sensitive pH/sugar-responsiveness,and plasticity.The strain sensor formed by the PBSTCE organohydrogel can not only effectively record large-scale human motions(e.g.finger/wrist/elbow bending,walking,etc.),but also accurately capture subtle motion changes(e.g.breathing,chewing,swallowing,speaking,smiling and frowning).Moreover,the self-healed organohydrogel sensor also exhibited almost invariable mechanical,electrical and sensing behaviors.This work demonstrates a feasible strategy to construct multifunctional starch-based organohy-drogels,and promotes their efficient,stable and eco-friendly application as flexible wearable devices.

关 键 词:Conductive organohydrogel Strain sensor SELF-HEALING SELF-ADHESIVE ANTI-FREEZING ANTIBACTERIAL 

分 类 号:TB33[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象