检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴栋萁 苏毅方 谢强强 WU Dongqi;SU Yifang;XIE Qiangqiang(Research Institute of State Grid Zhejiang Electric Power Co Ltd,Hangzhou 310006,China;State Grid Zhejiang Electric Power Co Ltd,Hangzhou 310007,China;School of Electronics and Information,Hangzhou Dianzi University,Hangzhou 310018,China)
机构地区:[1]国网浙江省电力有限公司电力科学研究院,浙江杭州310006 [2]国网浙江省电力有限公司,浙江杭州310007 [3]杭州电子科技大学电子信息学院,浙江杭州310018
出 处:《传感器与微系统》2023年第8期148-151,共4页Transducer and Microsystem Technologies
基 金:国网浙江省电力有限公司双创资助项目(B711JZ22000C)。
摘 要:城市中配电站房分布广、基数大,为了便于对大规模的配电站房进行实时监控并避免配电站房的信息泄露,提出了一种基于YOLOv5s模型的图像识别边缘计算方法。YOLOv5s模型被简化以移植到微控制器单元。改进模型采用ShuffleNetV2网络替换原模型的CSPNet骨干网络;去除Focus层,避免多次切片操作;摘除ShuffleNetV2骨干网络的1024卷积和7×7池化层;对YOLOv5的颈部网络进行了剪枝操作。通过实验验证,在不同场景下,所提出的图像识别方法的网络参数约为95 ms/帧(优于YOLOv5s的480 ms/帧),能够有效识别和准确定位火情,探测精度可达95.5%。YOLOv5计算所得的结果将被传输至边缘节点进行整合并发送至云平台进行处理。The power distribution stations in cities is widely distributed and has a large base.In order to conveniently monitor large-scale power distribution station in real-time and avoid information leakage,an image recognition edge computing method based on YOLOv5s model is proposed.The YOLOv5s model is simplified to be ported to microcontroller units(MCU).The improved model uses ShuffleNetV2 network to replace the CSPNet backbone network of the original model.The Focus layer is removed to avoid multiple slicing operations.1024 convolution and 7×7 pooling layers of ShuffleNetV2 backbone network is removed.The neck network of YOLOv5 is pruned.Through experimental verification,the network parameters of the proposed image recognition method in different scenarios are about 95 ms/frame(better than 480 ms/frame of YOLOv5s),which can effectively identify and accurately locate fires,with a detecting precision of 95.5%.The results calculated by YOLOv5 will be transmitted to edge nodes for integration and sent to the cloud platform for processing.
关 键 词:配电站房 图像识别 YOLOv5模型 微控制器单元 轻量级 边缘计算
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7