检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王明阳 张天赐 尹茂振 白梅娟 侯帅[1] WANG Ming-yang;ZHANG Tian-ci;YI Mao-zhen;BAI Mei-juan;HOU Shuai(Hebei University of Engineering,Handan 056000,China;China Academy of Weapons Science,Beijing 100089,China;Yuanguang Software(Beijing)Co.,LTD,Beijing 100176,China)
机构地区:[1]河北工程大学,河北省邯郸市056038 [2]中国兵器科学研究院,北京市100089 [3]远光软件(北京)有限公司,北京市100176
出 处:《电脑与信息技术》2023年第4期15-19,共5页Computer and Information Technology
基 金:国网河北省电力有限公司科技项目(项目编号:kj2021-042);国家自然科学基金项目(项目编号;61802107)。
摘 要:火力分配是现代和将来作战中的关键要素,在战斗中具有非常重要的研究意义。文章针对步战车的火力分配运用问题提出了基于改进麻雀搜索算法的步战车火力分配模型。首先,提出了一种步战车火力分配相关的数学模型;其次,为了求取步战车火力分配最优方案,提出了一种基于强化学习的自学习麻雀搜索算法(Self-learning Sparrow Search Algorithm Based on Reinforcement Learning,SSA-RL);最后,为了避免不良麻雀个体进入子代种群,提出了一种个体精度约束方法。对本文的改进算法进行多次防真实验,证明了SSA-RL的有效性,为解决火力分配问题提供了新的方法和思路。Firepower distribution is a key element in modern and future combat,which has very important research significance in combat.Aiming at the problem of firepower distribution of infantry vehicle,this paper proposes a model of infantry vehicle firepower distribution based on improved sparrow search algorithm.Firstly,according to the characteristics of infantry fighting vehicle,a mathematical model of infantry fighting vehicle firepower distribution is proposed.Secondly,in order to obtain the optimal scheme of infantry vehicle firepower allocation,a Self-learning Sparrow Search Algorithm Based on Reinforcement Learning(SSA-RL)is proposed.Finally,in order to avoid bad sparrow individuals entering the offspring population,an individual precision constraint method is proposed.The effectiveness of SSA-RL is proved by several anti-truth experiments on the improved algorithm in this paper,which provides a new method and idea for solving the problem of fire distribution.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249