Decomposition of Covariate-Dependent Graphical Models with Categorical Data  

在线阅读下载全文

作  者:Binghui Liu Jianhua Guo 

机构地区:[1]School of Mathematics and Statistics&KLAS,Northeast Normal University,Changchun,Jilin 130024,P.R.China

出  处:《Communications in Mathematical Research》2023年第3期414-436,共23页数学研究通讯(英文版)

基  金:supported by the National Key R&D Program of China (Grant 2020YFA0714102);the National Natural Science Foundation of China (Grant 12171079).

摘  要:Graphical models are wildly used to describe conditional dependence relationships among interacting random variables.Among statistical inference problems of a graphical model,one particular interest is utilizing its interaction structure to reduce model complexity.As an important approach to utilizing structural information,decomposition allows a statistical inference problem to be divided into some sub-problems with lower complexities.In this paper,to investigate decomposition of covariate-dependent graphical models,we propose some useful definitions of decomposition of covariate-dependent graphical models with categorical data in the form of contingency tables.Based on such a decomposition,a covariate-dependent graphical model can be split into some sub-models,and the maximum likelihood estimation of this model can be factorized into the maximum likelihood estimations of the sub-models.Moreover,some sufficient and necessary conditions of the proposed definitions of decomposition are studied.

关 键 词:COLLAPSIBILITY contingency tables covariate-dependent DECOMPOSITION graphical models 

分 类 号:O151.21[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象