Uniform Convergence of Multigrid V-Cycle on Adaptively Refined Finite Element Meshes for Elliptic Problems with Discontinuous Coefficients  

在线阅读下载全文

作  者:Haijun Wu Weiying Zheng 

机构地区:[1]Department of Mathematics,Nanjing University,Jiangsu 210093,P.R.China [2]LSEC,Institute of Computational Mathematics,Academy of Mathematics and System Sciences Chinese Academy of Sciences,Beijing 100190,P.R.China

出  处:《Communications in Mathematical Research》2023年第3期437-475,共39页数学研究通讯(英文版)

基  金:supported by the NSF of China (Grant Nos.12171238,12261160361);supported in part by the China NSF for Distinguished Young Scholars (Grant No.11725106);by the China NSF major project (Grant No.11831016).

摘  要:The multigrid V-cycle methods for adaptive finite element discretizations of two-dimensional elliptic problems with discontinuous coefficients are considered.Under the conditions that the coefficient is quasi-monotone up to a constant and the meshes are locally refined by using the newest vertex bisection algorithm,some uniform convergence results are proved for the standard multigrid V-cycle algorithm with Gauss-Seidel relaxations performed only on new nodes and their immediate neighbours.The multigrid V-cycle algorithm uses O(N)operations per iteration and is optimal.

关 键 词:MULTIGRID adaptive finite elements elliptic problems discontinuous coefficients uniform convergence 

分 类 号:O186.11[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象