检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jiaxi Yang Kui Chen Kai Ding Chongning Na Meng Wang
机构地区:[1]Financial Technological Research Center,Zhejiang Lab,Hangzhou 361005,China [2]School of Computer Science and Engineering,Southeast University,Nanjing 211189,China
出 处:《Data Intelligence》2023年第2期388-412,共25页数据智能(英文)
基 金:supported by"Research on intelligent Computing technology in Financial Risk Control and Anti-fraud",funding code 2020NFACO1,Zhejiang Lab,leaded by Dr.Chongning Na.
摘 要:In recent years,feature engineering-based machine learning models have made significant progress in auto insurance fraud detection.However,most models or systems focused only on structural data and did not utilize multi-modal data to improve fraud detection efficiency.To solve this problem,we adapt both natural language processing and computer vision techniques to our knowledge-based algorithm and construct an Auto Insurance Multi-modal Learning(AIML)framework.We then apply AIML to detect fraud behavior in auto insurance cases with data from real scenarios and conduct experiments to examine the improvement in model performance with multi-modal data compared to baseline model with structural data only.A selfdesigned Semi-Auto Feature Engineer(SAFE)algorithm to process auto insurance data and a visual data processing framework are embedded within AIML.Results show that AIML substantially improves the model performance in detecting fraud behavior compared to models that only use structural data.
关 键 词:Auto Insurance Multi-modal Learning Fraud detection Ensemble learning
分 类 号:F426.471[经济管理—产业经济] TP181[自动化与计算机技术—控制理论与控制工程] F842.634[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249