基于抗混叠残差注意力网络的人脸表情识别  被引量:3

Facial Expression Recognition Based on Anti-Aliasing Residual Attention Network

在线阅读下载全文

作  者:丰芳宇 罗晓曙[1] 蒙志明 王广宇 FENG Fangyu;LUO Xiaoshu;MENG Zhiming;WANG Guangyu(School of Electronic and Information Engineering,Guangxi Normal University,Guilin 541004,Guangxi,China;School of Innovation and Entrepreneurship,Guangxi Normal University,Guilin 541004,Guangxi,China)

机构地区:[1]广西师范大学电子与信息工程学院,广西桂林541004 [2]广西师范大学创新创业学院,广西桂林541004

出  处:《计算机工程》2023年第8期190-198,共9页Computer Engineering

基  金:广西人文社会科学发展研究中心“科学研究工程·创新创业专项”(重大委托项目)(ZDCXCY01)。

摘  要:针对人脸表情识别中难以提取有效特征,以及类别之间相似性高、易混淆导致人脸表情识别准确率下降的问题,提出一种基于抗混叠残差注意力网络的人脸表情识别方法。针对传统降采样方法易造成表情判别性特征丢失的不足,构建抗混叠残差网络来改善对表情图像的特征提取能力,加强表情特征的表征,从而提取更加有效的人脸表情全局信息。同时,利用改进的通道注意力机制和标签平滑的正则化策略来加强对人脸局部关键表情区域的关注,其中改进的通道注意力专注于区分性较高的表情特征,抑制非表情区域的权重,从而在网络提取的全局信息中定位更加细节的局部表情区域,标签平滑技术则通过增加决策表情类别的信息量对预测概率进行修正,避免过于绝对的预测结果,从而减少相似表情之间的误判。实验结果表明,该方法在人脸表情数据集RAF-DB和FERPlus上的识别准确率分别达到88.14%和89.31%,与DACL、VTFF等其他先进方法相比识别性能更优,相较于原始残差网络有效提升了人脸表情识别准确率和鲁棒性。As it is difficult to extract effective features in facial expression recognition and the high similarity between categories and easy confusion lead to low accuracy of facial expression recognition,a facial expression recognition method based on anti-aliasing residual attention network is proposed.First,in view of the problem that the traditional subsampling method can easily cause the loss of expression discriminative features,an anti-aliasing residual network is constructed to improve the feature extraction ability of expression images and enhance the representation of expression features,enabling more effective global facial expression information to be extracted.At the same time,the improved channel attention mechanism and label smoothing regularization strategy are used to enhance the attention to the local key expression regions of the face:the improved channel attention focuses on the highly discriminative expression features and suppresses the weight of non-expressive regions,so as to locate more detailed local expression regions in the global information extracted by the network,and the label smoothing technology corrects the prediction probability by increasing the amount of information of the decision-making expression category,avoiding too absolute prediction results,which reduces misjudgment between similar expressions.Experimental results show that,the recognition accuracies of this method on the facial expression datasets RAF-DB and FERPlus reach 88.14%and 89.31%,respectively.Compared with advanced methods such as DACT and VTFF,this method has better performance.Compared with the original residual network,the accuracy and robustness of facial expression recognition are effectively improved.

关 键 词:人脸表情识别 残差网络 抗混叠 标签平滑 注意力机制 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象