检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈子洋 彭道刚 徐春梅 赵慧荣 CHEN Ziyang;PENG Daogang;XU Chunmei;ZHAO Huirong(College of Automation Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
机构地区:[1]上海电力大学自动化工程学院,上海200090
出 处:《热力发电》2023年第8期188-196,共9页Thermal Power Generation
基 金:国家自然科学基金重大研究计划培育项目(92067105);上海市“科技创新行动计划”地方院校能力建设专项项目(20020500500)。
摘 要:分布式能源电站以其清洁环保、经济高效得到快速发展,但其电站设备用于故障诊断的数据较少,目前急需一种能够预测设备运行健康状态和老化程度的方法。基于此,提出一种能够分析设备运行状态、获取设备劣化演变趋势的预测模型。首先将设备多维数据进行预处理,采用层次分析法与高斯混合分布相结合,定量地构建一种基于改进马氏距离的分布式能源电站设备健康度模型;然后建立基于改进麻雀算法和长短时记忆神经网络的组合预测模型,对分布式能源电站设备的劣化情况做趋势预测及相关分析。实验结果表明,所提出的融合健康度模型在分布式能源电站实际故障数据不足的情况下,能够在设备出现异常时做出预测。Distributed energy power stations are developing rapidly because of their cleanliness,environmental protection,economy and high efficiency.However,there are few data used for fault diagnosis of plant equipment,so a method to predict the health state and aging degree of equipment is urgently needed.Based on this,a prediction model which can analyze the running state of equipment and obtain the deterioration trend of equipment is proposed.Firstly,multi-dimensional data of the equipment is preprocessed,and an improved Mahalanobis distance based equipment health model of distributed energy power station is constructed quantitatively by combining the analytic hierarchy process(AHP)with Gaussian mixture distribution.Then,the combined prediction model based on the improved sparrow algorithm and short and long time memory neural network is established to predict the trend and correlation analysis of the deterioration of distributed energy power plant equipment.The experimental results show that the proposed fusion health model can predict equipment anomalies in the case of insufficient actual fault data of distributed energy power stations.
关 键 词:设备健康度 改进马氏距离 高斯混合分布 麻雀搜索算法 长短时记忆神经网络
分 类 号:TM62[电气工程—电力系统及自动化] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7