检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Nasser MADANI Mohammad MALEKI
机构地区:[1]School of Mining and Geosciences,Nazarbayev University,Astana 010000,Kazakhstan [2]Department of Metallurgical and Mining Engineering,Universidad Católica del Norte,Antofagasta 1270709,Chile
出 处:《Frontiers of Earth Science》2023年第2期417-436,共20页地球科学前沿(英文版)
基 金:The first author is thankful to Nazarbayev University for funding this work via“Faculty Development Competitive Research Grants for 2018-2020 under Contract No.090118FD5336 and 2021-2023 under Contract No.021220FD4951”;This work is supported by Faculty Development Competitive Research Grants for 2018-2020 under Contract No.090118FD5336 and 2021-2023 under Contract No.021220FD4951.
摘 要:Spatial modeling of ore grades is frequently impacted by the local variation in geological domains such as lithological characteristics,rock types,and geological formations.Disregarding this information may lead to biased results in the final ore grade block model,subsequently impacting the downstream processes in a mining chain project.In the current practice of ore body evaluation,which is known as stochastic cascade/hierarchical geostatistical modeling,the geological domain is first characterized,and then,within the geological model,the ore grades of interest are evaluated.This practice may be unrealistic in the case when the variability in ore grade across the boundary is gradual,following a smooth transition.To reproduce such characteristics,the cross dependence that exists between the ore grade and geological formations is considered in the conventional joint simulation between continuous and categorical variables.However,when using this approach,only one ore variable is considered,and its relationship with other ore grades that may be available at the sample location is ignored.In this study,an alternative approach to jointly model two cross-correlated ore grades and one categorical variable(i.e.,geological domains)with soft contact relationships that exist among the geological domains is proposed.The statistical and geostatistical tools are provided for variogram inference,Gibbs sampling,and conditional cosimulation.The algorithm is also tested by applying it to a Cu deposit,where the geological formations are managed by the local and spatial distribution of two cross-correlated ore grades,Cu and Au,throughout the deposit.The results show that the proposed algorithm outperforms other geostatistical techniques in terms of global and local reproduction of statistical parameters.
关 键 词:geostatistical simulation categorical variable continuous variable geological domain variogram inference
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30