Differential privacy histogram publishing method based on dynamic sliding window  被引量:3

在线阅读下载全文

作  者:Qian CHEN Zhiwei NI Xuhui ZHU Pingfan XIA 

机构地区:[1]School of Management,Hefei University of Technology,Hefei 230009,China [2]Key Laboratory of Process Optimization and Intelligent Decision-making,Ministry of Education,Hefei 230009,China

出  处:《Frontiers of Computer Science》2023年第4期209-220,共12页中国计算机科学前沿(英文版)

基  金:supported by the National Nature Science Foundation of China(Grant Nos.91546108,and 71490725);the AnhuiProvincial Scienceand Technology Major Projects(201903a05020020);the Anhui Provincial Natural Science Foundation(1908085QG298);the Fundamental Research Funds for the Central Universities(JZ2019HGTA0053,JZ2019 HGBZ0128);the Open Research Fund Program of Key Laboratory of Process Optimization and Intelligent Decision-making,Ministry of Education,China.

摘  要:Differential privacy has recently become a widely recognized strict privacy protection model of data release.Differential privacy histogram publishing can directly show the statistical data distribution under the premise of ensuring user privacy for data query,sharing,and analysis.The dynamic data release is a study with a wide range of current industry needs.However,the amount of data varies considerably over different periods.Unreasonable data processing will result in the risk of users’information leakage and unavailability of the data.Therefore,we designed a differential privacy histogram publishing method based on the dynamic sliding window of LSTM(DPHP-DL),which can improve data availability on the premise of guaranteeing data privacy.DPHP-DL is integrated by DSW-LSTM and DPHK+.DSW-LSTM updates the size of sliding windows based on data value prediction via long shortterm memory(LSTM)networks,which evenly divides the data stream into several windows.DPHK+heuristically publishes non-isometric histograms based on k-mean++clustering of automatically obtaining the optimal K,so as to achieve differential privacy histogram publishing of dynamic data.Extensive experiments on real-world dynamic datasets demonstrate the superior performance of the DPHP-DL.

关 键 词:differential privacy dynamic data histogram publishing sliding window 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象