检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈晨 王厚峰 朱晴晴 柳军飞 Chen Chen;Hou-Feng Wang;Qing-Qing Zhu;Jun-Fei Liu(Office of the Cyberspace Affairs Commission,Peking University,Beijing 100871,China;School of Computer Science,Peking University,Beijing 100871,China;School of Software and Microelectronics,Peking University,Beijing 100871,China;National Engineering Research Center for Software Engineering,Peking University,Beijing 100871,China)
机构地区:[1]Office of the Cyberspace Affairs Commission,Peking University,Beijing 100871,China [2]School of Computer Science,Peking University,Beijing 100871,China [3]School of Software and Microelectronics,Peking University,Beijing 100871,China [4]National Engineering Research Center for Software Engineering,Peking University,Beijing 100871,China
出 处:《Journal of Computer Science & Technology》2023年第3期612-625,共14页计算机科学技术学报(英文版)
基 金:supported by the National Natural Science Foundation of China under Grant No.62036001.
摘 要:Aspect category detection is one challenging subtask of aspect based sentiment analysis, which categorizes a review sentence into a set of predefined aspect categories. Most existing methods regard the aspect category detection as a flat classification problem. However, aspect categories are inter-related, and they are usually organized with a hierarchical tree structure. To leverage the structure information, this paper proposes a hierarchical multi-label classification model to detect aspect categories and uses a graph enhanced transformer network to integrate label dependency information into prediction features. Experiments have been conducted on four widely-used benchmark datasets, showing that the proposed model outperforms all strong baselines.
关 键 词:aspect based sentiment analysis aspect category detection hierarchical multi-label classification transformer network
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249