检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:余绍淮[1] 余飞[1] 罗博仁 徐静[2] 李博[2] YU ShaoHuai;YU Fei;LUO BoRen;XU Jing;LI Bo(CCCC Second Highway Consultants Co.,Ltd.,Wuhan 430056,China;College of Control Science and Engineering,Shandong University,Jinan 250061,China)
机构地区:[1]中交第二公路勘察设计研究院有限公司,武汉430056 [2]山东大学控制科学与工程学院,济南250061
出 处:《地球物理学进展》2023年第3期1408-1415,共8页Progress in Geophysics
基 金:湖北省重点研发计划(2021BAA185);武汉市重点研发计划项目(2022012202015071);中交二公院科技研发项目(KJFZ-2020-012)联合资助。
摘 要:探地雷达具有高效率、非破坏性、穿透性强和分辨率高等优点,使其成为隧道衬砌病害检测的主流方法.针对目前大多数深度学习网络只能检测出探地雷达图像中隧道衬砌病害的类型和位置,难以准确识别病害的轮廓的问题,本文提出了一种基于探地雷达图像的隧道衬砌智能病害分类与轮廓识别方法,首先构建了基于YOLACT(You Only Look At CoefficienTs)的病害轮廓及类型识别网络模型,然后结合裂缝、脱空、空洞等六类病害的介电常数模型采用时域有限差分法正演生成仿真探地雷达数据集进行模型训练,最后通过无水隧道衬砌病害和含水隧道衬砌病害的仿真数据以及隧道现场数据进行该方法的测试验证,通过模型分析和识别探地雷达B-Scan图像中的病害分类与轮廓.研究试验表明,表明本文方法在仿真数据中对裂缝、空洞、脱空、含水裂缝、含水空洞和含水脱空这六类典型隧道衬砌病害的类别和轮廓的识别结果较为准确,识别平均准确率达92.28%,同时该方法在现场试验真实探地雷达数据中也能够有效识别衬砌病害的轮廓,在实际工程中具有广泛应用前景.Ground Penetrating Radar (GPR) has the advantages of high efficiency, non-destructive, strong penetrability and high resolution, making it the mainstream method of tunnel lining disease detection. To solve the problem that most of the current depth learning networks can only detect the type and location of tunnel lining diseases in the GPR image, and it is difficult to accurately identify the contour of the disease, this paper proposes an intelligent disease classification and contour recognition method for tunnel lining based on the GPR image. First, a disease contour and type recognition network model based on YOLACT (You Only Look At CoefficienTs) is constructed, and then combined with the dielectric constant models of six kinds of diseases, such as cracks, voids and cavities, the finite difference time domain method is used to forward generate the simulated ground penetrating radar data set for model training. Finally, the method is tested and verified by the simulation data of waterless tunnel lining disease and water bearing tunnel lining disease as well as the tunnel site data. The disease classification and contour in the B-Scan image of GPR are identified through model analysis. The research results show that the method in this paper is more accurate in identifying the categories and contours of six typical tunnel lining diseases, including cracks, cavities, voids, water containing cracks, water containing cavities and water containing voids, in the simulation data, with an average recognition accuracy of 92.28%. At the same time, the method can also effectively identify the contours of lining diseases in the field test real ground penetrating radar data, which has broad application prospects in practical projects.
分 类 号:P631[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.198.162